

ENGINEERING RELIABILITY

COMBINATORICS

BINOMIAL &

RANDOM

BAYES' RILLE

ENGINEERING RELIABILITY FUNDAMENTALS OF PROBABILITY

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics **Drexel University**

OUTLINE

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

COMBINATORICS

THE PROBABILITY FORMALISM

Events

Probabilities

COMBINATORICS

Elementary Combinatorics

Bernoulli Trials

Binomial & Poisson Distributions

RANDOM VARIABLES

Discrete & Continuous RV's

Normal Distribution

Bayes' Rule Revisited

SUMMARY

RANDOM VARIABLE

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

THE PROBABILIT FORMALISM

2721110

Corentra

COMBINATORICS

COMBINATORICS

BERNOULLI TRIAL

POISSON DISTRIBUTION:

RANDOM VARIABLE

DISCRETE & CONTINUOUS RV

NORMAL.

BAYES' RU

BAYES' RUI REVISITED

SUMMARY

- ► A random variable (denoted by X) is a variable that can assume one or more possible numerical values (denoted by x)
- ▶ The value *x* that *X* assumes is determined by chance
- A random variable may be:
 - discrete

$$x \in \{1, 2, 3\}$$

or continuous

$$x \in \{x \mid 0 \le x < \infty\}$$

PROBABILITY DISTRIBUTION/PROBABILITY DENSITY

ENGINEERING RELIABILITY

 for discrete random variables the probability distribution function is the set of probabilites

PRELIMINARY DEFINITIONS

$$f(x) = P(X = x)$$
, and $\sum_{x} f(x) = 1$

PROBABILI FORMALISI

EVENIS

for continuous random variables the (cumulative) probability function is the function:

COMBINATORICS

F(x) = P(X < x)

COMBINATORICS
BERNOULLI TRIALS
BINOMIAL &
POISSON
DISTRIBUTIONS

for continuous random variables the probability distribution or probability density is:

RANDOM VARIABLE

$$f(x) = \frac{d}{dx}F(x)$$
, and $\int_{-\infty}^{\infty} f(x) dx = 1$

DISCRETE &
CONTINUOUS RV

BAYES' RUI REVISITED

SUMMARY

PROBABILITY OF FAILURE/RELIABILITY

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

COMBINATORICS

▶ Let the random variable T denote the time of failure of a product during service. Then the possible values of T are the set $0 < t < \infty$.

ightharpoonup The associated probability density is f(t), the probability that failure occurs at time t is

$$F(t) = \int_0^t f(\tau) \, d\tau$$

► The reliability function is the probability of survival to time t

$$R(t) = P(T \ge t) = 1 - F(t) = \int_{t}^{\infty} f(\tau) d\tau$$

SAMPLE SPACE

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

PROBABILITY FORMALISM

EVENTS
PROBABILITIE

Corenzarimona

COMBINATORICS

COMBINATORIC

BERNOULLI TRI

POISSON DISTRIBUTION

RANDOM VARIABLE

Continuous

DISTRIBUTION

BAYES' RUL REVISITED

SUMMARY

The underlying idea is that there is a well-defined trial and a set of possible outcomes.

EXAMPLE (FLIPPING A COIN 3 TIMES)

Flipping a coin 3 times yields the following set of outcomes:

$$\xi_1 = TTT$$
 $\xi_2 = TTH$ $\xi_3 = THT$ $\xi_4 = THH$
 $\xi_5 = HTT$ $\xi_6 = HTH$ $\xi_7 = HHT$ $\xi_8 = HHH$

- ► Sample space, *S*, the set of all possible outcomes.
- ▶ Elementary outcome, ξ , the individual elements of S.

EVENTS

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

PROBABILIT FORMALISM

EVENTS
PROBABILITIES

COMBINATORICS

COMBINATORICS
BERNOULLI TRIAI
BINOMIAL &

BINOMIAL & POISSON DISTRIBUTIONS

RANDOM VARIABLE

DISCRETE & CONTINUOUS RV'S

DISTRIBUTION
BAYES' RULE
REVISITED

SUMMARY

Event *A*: a subset of the sample space. In general, an event is defined by a proposition about the elements in it.

EXAMPLE (FLIPPING A COIN 3 TIMES)

A is the event that a tail shows up on the second toss

$$A = \{\xi_1, \xi_2, \xi_5, \xi_6\}$$

Elementary event: $\{\xi\}$, where ξ is an elementary outcome.

Sure event: the entire sample space, S.

Impossible event: the empty set, \emptyset .

Complementary event: A^c consists of all events not in A. Mutually Exclusive events: events that have pairwise empty intersections

PROBABILITY

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

PROBABILITY FORMALISM

PROBABILITIES

COMBINATORICS

ELEMENTARY

BERNOULLI TRIAL

BINOMIAL & POISSON DISTRIBUTIONS

RANDOM VARIABLE

DISCRETE & CONTINUOUS R

NORMAL DISTRIBUTION

BAYES' RUI REVISITED

SHMMARY

A probability measure is a function that assigns a 'likelihood' of occurrence to each subset of S (to each event)

A Probability Measure *P* is a function on the set of subsets of *S* that has the following properties:

- ▶ P(S) = 1
- ▶ $P(A) \ge 0$ for each $A \subset S$
- For any sequence of mutually exclusive events A₁, A₂,...

$$P\left(\cup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P\left(A_i\right)$$

VENN DIAGRAMS

ENGINEERING RELIABILITY

PROBABILITIES

COMBINATORICS

The Venn diagram is an aid in visualizing basic properties of sets. It can also serve as a simple visual representation of the probability model.

- ► The sample space S is visualized as a rectangular set of points in the plane.
- ▶ The elementary outcomes are the points in S.
- The probability is associated with a the (non-uniform) distribution of a unit mass over the set S. In the case of a finite number of outcomes, the mass is concentrated at a finite number of points.

VENN DIAGRAMS

BASIC SET OPERATIONS

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

THE PROBABILIT FORMALISM

PROBABILITIES

COMBINATORICS

ELEMENTARY

BERNOULLI TRI

BINOMIAL & POISSON

RANDOM VARIABLES

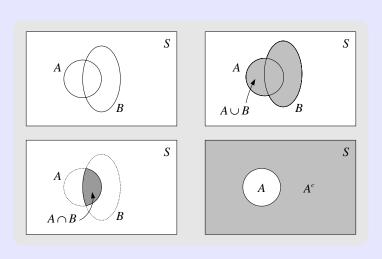
DISCRETE & CONTINUOUS R'

NORMAL

BAYES' RULE

REVISITED

SUMMARY



CONDITIONAL PROBABILITY & INDEPENDENT EVENTS

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

PROBABILIT FORMALISM

PROBABILITIES

COMBINATORICS

COMBINATORICS
BERNOULLI TRI
BINOMIAL &

POISSON
DISTRIBUTIONS

RANDOM VARIABLE

DISCRETE &
CONTINUOUS R
NORMAL

BAYES' RUL REVISITED

SUMMARY

The probability that an event A occurs, given the occurrence of an event B is called the conditional probability of A given B. It is denoted P(A|B). From the Venn diagram we see that,

$$P(A \cap B) = P(A|B)P(B)$$

 $P(A|B) = \frac{P(A \cap B)}{B}, \quad \text{if } P(B) \neq 0$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \quad \text{if } P(B) \neq 0$$

Two events *A* and *B* are independent if the occurrence of one does not 'condition' the occurrence of the other, i.e.,

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$

Thus, for independent events

$$P(A \cap B) = P(A) P(B)$$

INDEPENDENT EVENTS

ENGINEERING RELIABILITY

EXAMPLE (FLIPPING A COIN 3 TIMES)

- reconsider the coin flipping experiment with sample space *S* shown below.
- let *A* be the event that a *T* occurs on the third toss.
- let B be the event that an H occurs on the second toss.

$$P(A) = \frac{1}{2}, \quad P(B) = \frac{1}{2}, \quad P(A|B) = \frac{1}{2}, \quad P(B|A) = \frac{1}{2}$$

Notice that the events are independent, but not mutually exclusive.

DEFINITIONS

PROBABILITY FORMALISM

PROBABILITIES

COMBINATORICS

COMBINATORICS

BINOMIAL &

POISSON DISTRIBUTION

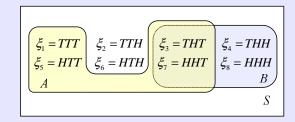
RANDOM VARIABLE

DISCRETE & CONTINUOUS RV

NORMAL DISTRIBUTION

BAYES' RU REVISITED

SHMMARY



BAYES' RULE

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

PROBABILITY FORMALISM

PROBABILITIES

COMBINATORICS

ELEMENTARY

D------

BINOMIAL &

Poisson Distribution

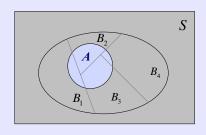
RANDOM VARIABLES

DISCRETE & CONTINUOUS RV

DISTRIBUTI

BAYES' RUI REVISITED

SUMMARY



▶ expansion rule: $A \subset \bigcup_{i \in J} B_i$, events B_i mutually exclusive

$$P(A) = \sum_{i \in J} P(A|B_i) P(B_i)$$

▶ Bayes' rule: $A \subset \bigcup_{i \in J} B_i$, events B_i mutually exclusive

$$P(B_i|A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(A|B_i) P(B_i)}{\sum_{i \in J} P(A|B_i) P(B_i)}$$

ELEMENTARY COMBINATORICS

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

PROBABILITY FORMALISM

PROBABILITIE

COMBINATORICS

ELEMENTARY COMBINATORICS

BINOMIAL & POISSON

RANDOM VARIABLES

CONTINUOU

DISTRIBUTIO

BAYES' RUI REVISITED

SHMMARY

A *population of size* n is a set of n distinguishable elements.

Consider a population of size n from which we obtain an 'ordered' sample of size r.

- ▶ Sampling with replacement there are n^r possible samples.
- Sampling without replacement there are $(n)_r = n (n-1) \cdots (n-r+1)$ possible samples.
- Set n = r to find that there are n! different orderings of n elements.

BINOMIAL COEFFICIENTS

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

THE PROBABILIT FORMALISM

Drop a par erre

COMBINATORIC:

FLEMENTARY

COMBINATORICS

BINOMIAL & POISSON

RANDOM VARIABLE

DISCRETE & CONTINUOUS RV

DISTRIBUTE

BAYES' RUI

SUMMARY

We want to choose a subpopulation of size r from a population of size n. How many different such subpopulations are there?

- ▶ There are $(n)_r$ samples of size r without replacement,
- ► Each *r*-sample can be ordered in *r*! ways,
- ▶ Thus, there are $(n)_r/r!$ subpopulations of size r.

$$\binom{n}{r} = \frac{(n)_r}{r!} = \frac{n(n-1)\cdots(n-r+1)}{r(r-1)\cdots1} = \frac{n!}{r!(n-r)!} = C_r^n$$

BERNOULLI TRIALS

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

THE
PROBABILIT
FORMALISM
EVENTS

COMBINATORICS

COMBINATORICS

REPNOLITI TRIALS

BINOMIAL & POISSON

RANDOM VARIABLE

DISCRETE & CONTINUOUS RV'S NORMAL DISTRIBUTION

BAYES' RUL REVISITED

SUMMARY

- By a Bernoulli trial we mean an experiment consisting of a sequence of independent trials with two possible outcomes, *success* and *failure*, having probability of failure p and probability of success q = 1 p.
 - ► Fundamental Problem: Consider a Bernoulli trial of Length *n*. What is the probability of exactly *k* failures?
- ▶ The event 'n trials results in k failures and n k successes' can happen in as many ways as k letters F can be distributed among n places.
- ▶ In other words, i.e., how many subpopulations of size k can be constructed from a population of size n? The event consists of:

 C_k^n points, each with probability $p^k q^{n-k}$

BINOMIAL DISTRIBUTION

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

PROBABILIT FORMALISM

PROBABILITI

COMBINATORICS

ELEMENTARY COMBINATORIC

BINOMIAL &

POISSON DISTRIBUTIONS

VARIABLES

DISCRETE & CONTINUOUS RV'S

NORMAL.

BAYES' RU

REVISITED

SUMMARY

The probability that n Bernoulli trials with probability p for failure and q = 1 - p for success results in k failures and n - k successes is given by the *Binomial distribution*:

$$b(k; n, p) = \binom{n}{k} p^{k} q^{n-k}, \ 0 \le k \le n$$

POISSON APPROXIMATION

ENGINEERING RELIABILITY

PRELIMINAR' DEFINITIONS

PROBABILIT FORMALISM

PROBABILITIE

G -----

ELEMENTARY

COMBINATORICS

BERNOULLI TRIA

BINOMIAL &
POISSON

RANDOM VADIABLE

DISCRETE & CONTINUOUS RV'S

NORMAL

BAYES' RUI

SHMMADV

If

- the probability of failure p is small,
- ▶ the number of trials n is large, so that $np = \lambda$, a constant then a good approximation to the Binomial distribution is the *Poisson distribution*:

$$p(k;\lambda) = e^{-\lambda} \frac{\lambda^k}{k!}, \ \lambda = np$$

RANDOM VARIABLES

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

THE PROBABILIT FORMALISM

PROBABILITIES

COMBINATORICS

COMBINATORICS

BERNOULLI TRIALS

BINOMIAL &

POISSON DISTRIBUTION:

VARIABLE

DISCRETE & CONTINUOUS RV'S

DISTRIBUTION
BAYES' RUL

SUMMARY

A function $X(\cdot)$ that maps a sample space S to the real numbers R is called a (real valued) random variable if it has the property:

$$\{\xi \in S | X(\xi) \le x\}$$
 is an event $\forall x \in R$

All elementary outcomes that result in $X(\xi) \le x$ is a valid subset of S, for all real x.

- ▶ A random variable is discrete if it can assume a finite set of distinct values, say x_i , $i = 1, ..., n < \infty$
- A random variable is continuous if the values it can assume are continuously distributed over its range, say

$$-\infty < x < \infty$$

DISCRETE RANDOM VARIABLES

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

PROBABILIT FORMALISM

PROBABILITIE

COMBINATORICS

ELEMENTARY

BERNOULLI TRI

POISSON

VARIABLE

DISCRETE & CONTINUOUS RV'S

DISTRIBUTION
BAYES' RUL

SUMMARY

▶ $f(x_i) = P(X = x_i)$ is called the probability distribution, note: $\sum_i f(x_i) = 1$

the (cumulative) probability function is:

$$F(x_k) = \sum_{i=1}^k f(x_i)$$

note:
$$F(x_k) = P(X \le x_k)$$

$$ightharpoonup$$
 mean: $\mu = \sum_{i=1}^n x_i f(x_i)$

• variance:
$$\sigma^2 = \sum_{i=1}^n (x_i - \mu)^2 f(x_i)$$

standard deviation: σ

COIN FLIPPING EXAMPLE

ENGINEERING RELIABILITY

PRELIMINAR' DEFINITIONS

PROBABILITY FORMALISM

PROBABILITIE

COMBINATORICS

ELEMENTARY

BERNOULLI TRIALS

POISSON DISTRIBUTION

RANDOM VARIABLE

DISCRETE &

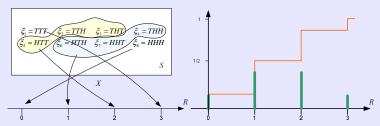
NORMAL

BAYES' RU

SHMMADV

EXAMPLE (FLIPPING A COIN 3 TIMES)

- ► Flipping a coin 3 times yields a set of 8 outcomes.
- ► Assume: on a single toss, P(H) = P(T) = 1/2.
- Define: X = number of tails in 3 tosses.



CONTINUOUS RANDOM VARIABLES

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

PROBABILI' FORMALISM

PROBABILITIE

Combinatoric

ELEMENTARY

D----------

BINOMIAL &

POISSON DISTRIBUTIONS

VARIABLE

DISCRETE & CONTINUOUS RV'S

DISTRIBUTION BAYES' RUL

SHMMADV

► the (cumulative) probability function is: F(x) = P(X < x)</p>

the probability distribution (density) is:

$$f(x) = \frac{d}{dx}F(x) \Rightarrow \int_{-\infty}^{\infty} f(x)dx = 1$$

- mean: $\mu = \int_{-\infty}^{\infty} x f(x) dx$
- variance: $\sigma^2 = \int_{-\infty}^{\infty} (x \mu)^2 f(x) dx$
- \blacktriangleright standard deviation: σ

CONTINUOUS RANDOM VARIABLES, CONT'D

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

PROBABILITY FORMALISM

EVENTS

PROBABI

PROBABILITIE

COMBINATORICS

COMBINATORICS

BERNOULLI TR BINOMIAL &

POISSON DISTRIBUTIONS

VARIABLE

DISCRETE & CONTINUOUS RV'S

DISTRIBUTION
BAYES' RUL

BAYES' RULE REVISITED

SUMMARY

▶ median: x_m , $F(x_m) = \int_{-\infty}^{x_m} f(x) dx = \frac{1}{2}$

▶ mode: x_{mode} , $f(x_{\text{mode}}) \ge f(x)$

► skewness: $sk = \frac{1}{\sigma^3} \int_{-\infty}^{\infty} (x - \mu)^3 f(x) dx$

Comments on skewness:

► $sk > 0 \Rightarrow left - skewed : x_{mode} < x_m < \mu$

► $sk < 0 \Rightarrow right - skewed : x_{mode} > x_m > \mu$

► sk = 0 ⇒ symmetric : $x_{\text{mode}} = x_m = \mu$

EXAMPLE – POISSON DISTRIBUTION

ENGINEERING RELIABILITY

PRELIMINAR'
DEFINITIONS

PROBABILIT FORMALISM

PROBABILITIES

COMBINATORICS

BERNOULLI TRIA BINOMIAL & POISSON

RANDOM VARIABLES

DISCRETE &

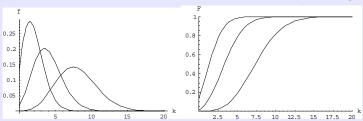
NORMAL DISTRIBUTION

BAYES' RULE REVISITED

SUMMARY

$f(k) = e^{-\lambda} \frac{\lambda^k}{k!}$ $F(k) = \sum_{i=1}^k e^{-\lambda} \frac{\lambda^i}{i!} = \frac{(1+k)\Gamma(1+k,\lambda)}{\Gamma(2+k)}$

Here is the Poisson distribution for $\lambda=2,4,8$ (left to right)



EXAMPLE - POISSON DISTRIBUTION, CONT'D

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

THE PROBABILIT

FURMALI

PROBABILITIE

COMBINATORIC

ELEMENTARY

COMBINATORIC

DEKNOULLI IKD

POISSON

RANDOM

DISCRETE &

CONTINUOUS RV'S

DISTRIBUTION BAYES' RULE

REVISITED

SUMMARY

$$\mu = \sum_{k=0}^{\infty} k \left(e^{-\lambda} \frac{\lambda^k}{k!} \right) = \lambda$$

$$\sigma^2 = \sum_{k=0}^{\infty} (k - \mu)^2 \left(e^{-\lambda} \frac{\lambda^k}{k!} \right) = \lambda$$

$$sk = \frac{1}{\sigma^3} \sum_{k=0}^{\infty} (k - \mu)^3 \left(e^{-\lambda} \frac{\lambda^k}{k!} \right) = \frac{1}{\sqrt{\lambda}}$$

THE NORMAL DISTRIBUTION

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

THE PROBABILITY FORMALISM

PROBABILITIES

Combinatoric

ELEMENTARY COMBINATORICS

BINOMIAL & POISSON

RANDOM VARIABLE

DISCRETE & CONTINUOUS RV

NORMAL DISTRIBUTION BAYES' RULE

BAYES' RULE REVISITED

SUMMARY

The normal distribution has two key applications in reliability:

- ▶ It is a good model for the variability of parameters in batch-manufactured parts.
- It is a good approximation to the 'wear-out' time to failure distribution.

$$f(T) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{T-\mu}{\sigma}\right)^2}$$

where μ is the mean time to failure and σ is the standard deviation of the time to failure.



STANDARD NORMAL DISTRIBUTION

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

PROBABILITY FORMALISM

PROBABILITIES

COMBINATORICS

COMBINATORICS
BERNOULLI TRIA

BINOMIAL & POISSON DISTRIBUTION

RANDOM VARIABLES

CONTINUOI NORMAL

DISTRIBUTION BAYES' RULE

SHMMARY

The normal distribution is commonly used that the standard normal distribution has been introduced to facilitate computations. Suppose X is a normally distributed random variable with mean μ and standard deviation σ . Consider a new random variable Z, related to X, by the relation

$$Z = (X - \mu)/\sigma$$

Clearly,

$$P(X \le x) = P(Z \le (x - \mu)/\sigma)$$

Equivalently,

$$F(x) = \Phi\left((x - \mu)/\sigma\right)$$

where F(x) is the probability function for X and $\Phi(z)$ is that of Z. Thus,

$$f(x) = \frac{dF(x)}{dx} = \frac{d\Phi(z)}{dz}\frac{dz}{dx} = \phi(z)\frac{dz}{dx}$$

STANDARD NORMAL DISTRIBUTION – 2

ENGINEERING RELIABILITY

It follows that

RANDOM

NORMAL DISTRIBUTION

$$\phi(z) = \left[f(x) \left(\frac{dz}{dx} \right)^{-1} \right]_{x \to \sigma z + \mu} = \left[\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2} \sigma \right]_{x \to \sigma z + \mu}$$

So.

$$\phi\left(z\right) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}$$

and

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{1}{2}\zeta^{2}} d\zeta$$

The standard normal is the normal distribution wit zero mean and unit variance. It's usefulness follows from the fact that

$$F(x) = \Phi((x - \mu)/\sigma), \quad f(x) = \phi((x - \mu)/\sigma)$$

DETERMINING DISTRIBUTION PARAMETERS FROM DATA

ENGINEERING RELIABILITY

PRELIMINARY DEFINITIONS

PROBABILIT FORMALISM

PROBABILITIES

COMBINATORICS

ELEMENTARY

BERNOULLI TRIALS

POISSON DISTRIBUTION

RANDOM VARIABLE

DISCRETE & CONTINUOUS RV':

NORMAL DISTRIBUTION

BAYES' RULE REVISITED

SUMMARY

EXAMPLE (FLAT PANEL MONITOR)

A flat pane computer monitor is designed to operate for 10,000 hours. Data shows that 2% fail within 1000 hours and 3.8% fail before 2000 hours. Assuming a normal time to failure distribution, determine the mean time to failure.

$$F(t) = \int_{-\infty}^{t} f(\tau) d\tau = \frac{1}{2} \left(1 + \operatorname{Erf} \left[\frac{t - \mu}{\sqrt{2} \sigma} \right] \right)$$

We can obtain the unknown parameters μ, σ from the two relations

$$F(1000) = 0.02, F(2000) = 0.038 \Rightarrow \mu = 8351, \sigma = 3580$$

BAYES' RULE – CONTINUOUS RANDOM VARIABLES

ENGINEERING RELIABILITY

Suppose *X* and *Y* are random variables. The following quantities are defined:

PRELIMINAR DEFINITIONS

joint probability distribution is

$$F\left(x,y\right) = P\left(X \le x\right) \cap P\left(Y \le y\right)$$

FORMALISM

joint probability density function is

Corennana

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

COMBINATORIC

conditional density function for X given Y

BINOMIAL & POISSON DISTRIBUTIONS

$$f(x|y) = \frac{f(x,y)}{f(y)}$$

RANDOM VARIABLE

Bayes rule for densities

NORMAL DISTRIBUTION

 $f(x|y) = \frac{f(y|x)f(x)}{\int_{-\infty}^{\infty} f(y|x)f(x) dx}$

BAYES' RULE REVISITED

SUMMARY

SUMMARY

ENGINEERING RELIABILITY

PRELIMINAR DEFINITIONS

PROBABILIT FORMALISM

PROBABILITIE

COMBINATORICS

ELEMENTARY COMBINATORICS BERNOULLI TRIALS

BINOMIAL & POISSON DISTRIBUTIONS

RANDOM VARIABLE

DISCRETE & CONTINUOUS

NORMAL DISTRIBUTIO

BAYES' RUL REVISITED

SUMMARY

- Random variable, probability, reliability
- Sample space, events
- Conditional probability, Bayes' rule
- Combinatorics, Bernoulli trials
- Discrete random variables Binomial and Poisson distributions
- Continuous random variables Normal distribution
- Mean, variance skewness, median, mode