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INTRODUCTION

We will be concerned with the following measures of a
product or system that is not repaired upon failure.

I The reliability (or survivor) function, R (t).
I The failure rate, z (t) or λ (t).
I The mean time to failure, MTTF.
I The mean residual life MRL.
I Constant rate models.
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THE MEANING OF TIME

The failure time T of a product or systems is a random
variable. Time can take on different meanings depending on
the context, e.g.,

I Calender time.
I Operational time.
I Distance driven by a vehicle.
I Number of cycles for a periodically operated system.
I Number of times a switch is operated.
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PROBABILITY CHARACTERIZATION OF FAILURE

TIME

Associated with the time to failure T is the probability function

F (t) = P (T ≤ t)

which is the probability that the system fails within the time
interval (0, t]. If T is a continuous random variable, the probability
function is related to its probability density function f (t) by

F (t) =
∫ t

0
f (τ)dτ
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LOGNORMAL DISTRIBUTION

I The lognormal distribution has been found useful in the failure analysis of
items subjected to repeated loadings

I while the normal distribution is ideal for characterizing the influence of the

sum of a large number of independent events, the lognormal is appropriate

for characterizing the product of a large number of independent events

f (t) =
1√

2πσt
e−

1
2 ( ln t−µ

σ )2

, t > 0

F (t) =
1
2

(
1 + Erf

(
ln t − µ√

2σ
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, t > 0
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RELIABILITY FUNCTION

The reliability function is:

R (t) = P (T > t) = 1− F (t) =
∫ ∞

t
f (τ) dτ

I R (t) is the probability that the item will not fail in the
interval (0, t].

I R (t) is the probability that it will survive at least until
time t – it is sometimes called the survival function.
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FAILURE RATE

Consider the conditional probability:

P (t < T ≤ t + ∆t |T > t ) =
P (t < T ≤ t + ∆t)

R (t)

=
F (t + ∆t)− F (t)

R (t)
The failure rate (or, hazard function) is defined as:

λ (t) = lim
∆t→0

P (t < T ≤ t + ∆t |T > t )

∆t
=

f (t)
R (t)

λ(t) dt is the probability that the system will fail during the period
(t, t + dt], given that it has survived until time t.
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DISTRIBUTIONS FROM FAILURE RATE

Suppose the failure rate λ (t) is known. Then it is possible to
obtain f (t), F (t), and R (t)

f (t) =
dF (t)

dt
= −dR (t)

dt
⇒ λ (t) = −dR/dt

R

dR
R

= −λ (t) dt

⇓

R (t) = exp
[
−
∫ t

0 λ (τ) dτ
]

f (t) = λ (t) exp
[
−
∫ t

0 λ (τ) dτ
]

F (t) = 1− exp
[
−
∫ t

0 λ (τ) dτ
]
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EXAMPLE – TV SETS

EXAMPLE (TV SET FAILURE DATA)

Day failures failure rate
1 18 0.018
2 12 0.012
3 10 0.010
4 7 0.007
5 6 0.006
6 5 0.005
7 4 0.004
8 3 0.003
9 0 0

10 1 0.001
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EXAMPLE – TV SETS, CONT’D
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WEIBULL DISTRIBUTION

Perhaps the most frequently used distribution to model time
to failure probabilities is the Weibull distribution,
Weibull(α, β), The probability function is

F (t) =
{

1− e−(βt)α t ≥ 0
0 t < 0

and the corresponding density function is

f (t) =
d
dt

F (t) =
{
αβαtα−1e−(βt)α t ≥ 0

0 t < 0
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WEIBULL DISTRIBUTION – (2)

The Reliability function is:

R (t) = 1− F (t) = e−(βt)α , t > 0

and the failure rate function is

λ (t) =
f (t)
R (t)

= αβαtα−1, t > 0
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MEAN TIME TO FAILURE

The mean time to failure is

MTTF = E {T} =
∫ ∞

0
t f (t) dt

note that
f (t) =

d
dt

F (t) = − d
dt

R (t)

from which

MTTF = −
∫ ∞

0
t

dR (t)
dt

dt = − tR (t)|∞0 +
∫ ∞

0
R (t) dt

MTTF =
∫ ∞

0
R (t) dt
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EXAMPLE

EXAMPLE
Consider a system with reliability function

R (t) =
1

(0.2t + 1)2 , for t > 0 (t in months)

I probability density f (t) = − d
dt R (t) = 0.4

(0.2t+1)3

I failure rate λ (t) = f (t)
R(t) = 0.4

(0.2t+1)

I mean time to failure MTTF =
∫∞

0 R (t) dt = 5 months
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MEAN RESIDUAL LIFE

An item begins operation at time 0 and is still operating at
time t. We wish to compute the probability that it will survive
an additional interval of length τ . This is the conditional
reliability function at age t.

R (τ |t ) = P (T > t + τ |T > t ) =
P (T > t + τ)

P (T > t)
=

R (t + τ)
R (t)

The mean residual (or, remaining) life at age t is

MRL (t) =
∫ ∞

0
R (τ |t ) dτ =

1
R (t)

∫ ∞
t

R (τ)dτ
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EXAMPLE

Consider an item with failure rate λ (t) = t/(t + 1) Now
compute

R (t) = exp
(
−
∫ t

0

τ

τ + 1
dτ
)

= (t + 1) e−t

MTTF =
∫ ∞

0
(t + 1) e−t dt = 2

The conditional reliability function is

R (τ |t ) = P (T > τ + t |T > τ ) =
(t + τ + 1) e−(t+τ)

(t + 1) e−t =
t + τ + 1

t + 1

So,

MRL =
∫ ∞

0
R (τ |t ) dτ = 1 +

1
t + 1
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EXAMPLE: WEIBULL DISTRIBUTION

The mean time to failure is

MTTF =
∫ ∞

0
R (t) dt =

1
β

Γ
(

1
α

+ 1
)

The remaining life is

MRL =
1

R (t)

∫ ∞
t

R (t) dt =
(
α

β

)
e( t

β )α

Γ
(

1
α
,

(
t
β

)α)
The median life is

R (tm) = 0.50⇒ tm =
1
β

(ln 2)1/α

The variance of T is

var (T) =
1
β2

(
Γ
(

2
α

+ 1
)

+ Γ2
(

1
α

+ 1
))
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THE EXPONENTIAL DISTRIBUTION

Suppose λ (t) = λ0, a constant. Then,

R (t) = e−λ0t, F (t) = 1− e−λ0t, f (t) = λ0e−λ0t

This is the exponential distribution. We can easily compute

µ = MTTF =
1
λ0

σ =
1
λ0

R (µ) = 0.368, F (µ) = 0.632
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EXAMPLE

Suppose λ = .02 hr−1,

I What is the probability of a failure in the first 10 hours of
service?

P (T 6 10) = F (10) = 1− e0.02×10 = 0.181

I Suppose the unit operates satisfactorily for the first 100
hours. What is the probability of failure in the next 10 hours?

I Let X = event that the unit operates for 100 hours
⇒ P (X) = R (100) = .135

I Let Y = event that the unit fails within 110 hours
⇒ P (Y) = F (110) = .1108

I We want to compute P (Y|X). By definition

P (Y|X) =
P (Y ∩ X)

P (X)
=

P (100 6 t 6 110)
P (X)

=
F (110)− F (100)

R (100)
= 0.181
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UNIT UNDER REPEATED DEMAND

Suppose a unit is subjected to repeated demand (e.g.,
engine startup) over a large time interval (0, t]:

I p denotes the probability of failure to respond to a demand,
I the response to each demand is an independent event,
I n denotes the number of demands in time t,
I m = n/t denotes the average number of demands per unit

time,

The probability of k failures in n demands is given by the
Binomial distribution b (k; n, p) = Ck

npk(1− p)n−k.
Let N denote the number of trials until the first failure. Thus,
N = n means that the first n− 1 trials are successful, and
failure occurs at trial n. The distribution of N is the geometric
distribution

P (N = n) = (1− p)n−1p
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UNIT UNDER REPEATED DEMAND, CONT’D

The reliability function, R(n), is the probability that the first
failure occurs for some trial N > n. Consequently,

R (n) = P (N > n) = b (0; n, p) = (1− p)n

Suppose the single trial failure probability p is small and the
length of the observed sequence N large, in fact Np = λ,
λ = constant. Then,

lim
p→0

(1− p)
λ
p = e−λ ⇒ R (n) = e−np = e−mpt = e−λ0t

where λ0 = mp is the equivalent failure rate.
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MULTIPLE PERFORMANCE LEVELS

A unit operates at different performance levels during cyclic
operation. In each operating phase the unit fails at constant
rate.

EXAMPLE
I a motor cycles through 3 phases: start, run, standby,
I N, number of starts per service cycle,
I T denotes the number of service cycles to failure,
I c, time fraction motor runs during a cycle,
I 1− c, time fraction motor is in standby,
I p, probability of failure to start,
I λr, failure rate in run state,

I λs, failure rate in standby state.

λc , λd + cλr + (1− c)λs, where λd , Np

R (t) = e−λct
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COMMON VARIABLE RATE MODELS

I Time to failure is typically described by normal,
lognormal or Weibull probability distributions.

I The corresponding failure rates can be computed from

λ (t) = − 1
R (t)

dR (t)
dt

Normal : λ (t) =
φ (z)

σ (1− Φ (z))
; z =

t − µ
σ

Lognormal : λ (t) =
φ (z)
σtΦ (z)

; z =
ln (t)− µ

σ

Weibull : λ (t) = (αβ) (βt)α−1
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THE WEAR-IN FAILURE MODE & THE PROOF

TEST

I When initial failure rates are high, testing can improve the
reliability of deployed product.

I An initial, short period, tp, of testing of the entire batch weeds
out faulty product.

I suppose λ (t) = at−b, a, b > 0, the we can compute
R (t − tp|tp)

R (τ |tp) =
R (tp + τ)

R (tp)
=

e−
∫ tp+τ

0 λ(ξ)dξ

e−
∫ tp

0 λ(ξ)dξ
= e−

∫ tp+τ
tp

λ(ξ)dξ

R(t)

t

1

t
p

R(t
p
)

Early failures

t
p
+

R(t
p
+ )

R( t
p
|t
p
)
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SUMMARY

I Time to failure
I Failure rate
I Computation of probability functions from failure rate
I definitions of mean time to failure (MTTF) and

remaining life (MRL)
I Introduced lognormal, exponential and Weibull

distributions
I Examples of constant failure rate problems
I Proof Testing
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