

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREE

DEFINITION

QUALITATIV

Logic

LOGIC

COLSEI

ANALYSIS

CUT SET & TO

PROBABILITII

BASIC EVEN

SUMMAR

ENGINEERING RELIABILITY FAULT TREES AND RELIABILITY BLOCK DIAGRAMS

Harry G. Kwatny

Department of Mechanical Engineering & Mechanics
Drexel University

OUTLINE

ENGINEERING RELIABILITY

DIAGRAMS

DIAGRAMS

FAULT?

DEFINITIO

ANALYSIS

Logic

CUT S

QUANTITATI

Gum Com 8

CUT SET &

EVENT

BASIC EVEN

PROBABILITY

SUMMARY

DIAGRAMS

FAULT TREES

Fault Tree Definition

Qualitative Analysis

Logic

Cut Sets

Quantitative Analysis

Cut Set & Top Event Probabilities

Basic Event Probability

Introduction

Engineering Reliability

DIAGRAMS

FAULT TREE DEFINITION QUALITATIVE ANALYSIS

CUT SETS

QUANTITATION

ANALYSIS

CUT SET & TO EVENT PROBABILITIES BASIC EVENT PROBABILITY

SUMMARY

We will be concerned with how the structure of a system affects its reliability. We consider the two graphical representations of systems used for reliability analysis:

Fault Tree –

- The fault tree shows all possible combinations of failure events that may cause a specific system failure.
- Fault trees are constructed by considering deductively what caused the failure.
- Component failures and other events are combined through logical 'AND' (∩) and 'OR' (∪) operations to provide a logical description of the failure.

Reliability Block Diagram –

- A reliability block block diagram shows how the functioning of components or subsystems enable the satisfaction of a specific system function.
- These diagrams facilitate the computation of reliability indices and elucidate the role of redundancy.

FAULT TREE ANALYSIS

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREE DEFINITION

QUALITATIV ANALYSIS

CUT SET

ANALYSIS

CUT SET & TO

EVENT

PROBABILITIES

BASIC EVENT

- Fault tree analysis (FTA) is a top-down approach to failure analysis, starting with a possible failure event, called a TOP event, and then determining the ways it can happen.
- The analysis proceeds by determining how the TOP event is caused by lower level failure events.
- The primitive or basic failure events that ultimately cause the TOP event are connected through logical AND-gates and OR-gates.

SOME HISTORY OF FAULT TREE ANALYSIS

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREE DEFINITION

Analysis Logic

CUT SETS QUANTITA

CUT SET & TO EVENT PROBABILITIE BASIC EVENT

- ► FTA was first used by Bell Labs in connection with the safety analysis of the Minuteman missile launch control system in 1961.
- Boeing further developed the technique, applying it to the entire Minuteman system and then to commercial aircraft.
- Boeing applied FTA as part of a comprehensive safety review of the Apollo system following the launch pad fire on January 27, 1967.
- ► FTA was used in the WASH-1400 study (1976) conducted to review nuclear plant power design and to assure the public that the probability of nuclear accidents was very small. The 3-mile island accident occurred March 28, 1979.

EXAMPLE: POWER SUPPLY

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREE

OHALITATE

ANALYSIS

LUGIC

COLSEI

Analysis

CUT SET & T EVENT

BASIC EVEN

SUMMAR

The power supply system consists of the following elements:

- an offsite power supply
- a backup power system, containing
 - A diesel driven generator,
 - An automatic transfer switch.

EXAMPLE: POWER SUPPLY – 2

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREES

FAULT TREE

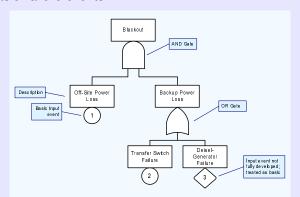
DEFINITION

OHAL PLATE

.

. . .

OHANTITA


Analysis

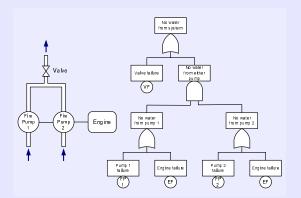
CUT SET &

PROBABILIT

BASIC EVEN

- ▶ the system 'fails' upon blackout when power is not available
- blackout occurs when both off-site power and backup power fail
- the diagram is developed from the top down terminating at 'basic' failure events

EXAMPLE: FIRE PUMP SYSTEM


ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREE

DEFINITION

- ► The fire pump system shown below has two pumps driven by a single engine.
- ▶ the TOP failure event is the failure to supply water to the fire hose.

FAULT TREE LOGIC

ENGINEERING RELIABILITY

In the fault tree shown below primary faults appear multiple times – this is typical of redundant systems.

DIAGRAMS

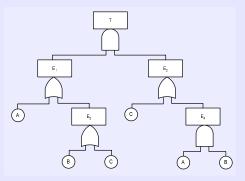
FAULT TREE

DEFINITION

QUALITATIVE

Logic

CUT SET


ANALYSIS

CUT SET & 7

EVENT PROPARILITI

BASIC EVEN

SUMMAR

The following logical expression defines the tree:

$$T = E_1 \cap E_2 = (A \cup E_3) \cap (C \cup E_4)$$

= $(A \cup (B \cup C)) \cap (C \cup (A \cap B))$

RULES OF BOOLEAN ALGEBRA

ENGINEERING RELIABILITY

DIAGRAMS

DIAGRAMS

FAULT TREE DEFINITION

QUALITATIV ANALYSIS

Logic

CUT SET

Analysis

CUT SET & TO EVENT

PROBABILITIE

BASIC EVENT

PROBABILITY

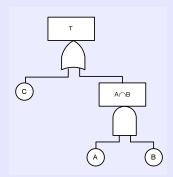
SUMMAR

The following logical relationships are identical to corresponding set relationships that can be derived from the Venn diagram.

Expression	Description
$X \cap Y = Y \cap X$	Commutative Law
$X \cup Y = Y \cup X$	
$X \cap (Y \cap Z) = (X \cap Y) \cap Z$	Associative Law
$X \cup (Y \cup Z) = (X \cup Y) \cup Z$	
$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$	Distributive Law
$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$	
$(X\cap Y)^c=X^c\cup Y^c$	de Morgan's Law
$(X \cup Y)^c = X^c \cap Y^c$	

FAULT TREE LOGIC – 2

ENGINEERING RELIABILITY


Using the Boolean logic rules, the expression for T can be reduced to:

$$T=C\cup (A\cap B)$$

This corresponds to the simplified fault tree shown below.

Logic

CUT SETS

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREE DEFINITION QUALITATIVE ANALYSIS

CUT SETS

ANALYSIS

CUT SET & TO

EVENT

PROBABILITIES

SUMMAR

Definitions:

- ➤ A cut set is a set of basic events whose simultaneous occurrence insures that the TOP event occurs.
- A cut set is minimal if it cannot be reduced without losing its status as a cut set.

Notes:

- The TOP event will occur if the basic events in a minimal cut set occur at the same time.
- ► The minimal cut sets describe the combinations of events that cause the TOP event to occur.

EXAMPLES OF CUT SETS

ENGINEERING RELIABILITY

DIAGRAMS

D1.1010.1.111

FAULT TRE

QUALITATI

ANALYSIS

Logic

CUT SETS

QUANTITATI

CUT SET & T

PROBABILITI

SUMMAR'

EXAMPLE (POWER SUPPLY SYSTEM)

cut sets

$$\{1,2,3\},\{1,2\},\{1,3\}$$

minimal cut sets

$$\{1,2\},\{1,3\}$$

EXAMPLE (FIRE PUMP SYSTEM)

cut sets

$$\left\{ VF, EF, FP1, FP2 \right\}, \left\{ VF, EF, FP1 \right\}, \left\{ VF, EF, FP2 \right\}, \left\{ VF, EF \right\}, \left\{ VF, FP1 \right\}, \left\{ VF, FP2 \right\}, \left\{ EF, FP1 \right\}, \left\{ EF, FP2 \right\}, \left\{ FP1, FP2 \right\}, \left\{ VF \right\}, \left\{ EF \right\}, \left$$

minimal cut sets

{VF}, {EF}, {FP1, FP2}

FAULT TREE NORMAL FORMS

ENGINEERING RELIABILITY

DIAGRAMS

211101111111

FAULT TREE DEFINITION

Logic

CUT SETS

ANALYSIS
CUT SET & TO
EVENT
PROBABILITIES

SHMMARY

Note:

- Conjunction: logical propositions connected by AND
- Disjunction: logical propositions connected by OR

Logic Expression Normal Forms:

 Conjunction Normal Form (CNF) a logical formula which is a conjunction of disjunctive clauses

$$A, A \cap B, (A \cup B) \cap C$$

 Disjunctive Normal Form (DNF) a logical formula which is a disjunction of conjunctive clauses

$$A, A \cup B, (A \cap B) \cup C$$

If the minimal cut sets of a fault tree are identified, the logical expression defining the tree can be expresses in DNF.

EXAMPLE (FIRE PUMP SYSTEM)

$$T = VF \cup EF \cup (FP1 \cap FP2)$$

EXAMPLE: FIRE PUMP REDUCED FAULT TREE

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREES

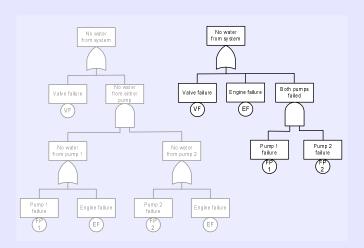
FAULT TREE

QUALITATIVI

.

CUT SETS

QUANTITATI


ANALYSIS

CUT SET &

PROBABILITI

BASIC EVENT PROBABILITY

STIMMAD

SETUP

ENGINEERING RELIABILITY

DIAGRAMS

211101111111

FAULT TRE

QUALITATIV ANALYSIS

CUT SETS

QUANTIT/

ANALYSIS

CUT SET & TOP

PROBABILITIES
BASIC EVENT

SUMMAR

Definitions:

- ▶ $E_i(t)$ denotes that the i^{th} component (or event) is in a failed state at time t.
- ➤ A minimal cut set is said to fail (or be in a failed state) when all of its basic events are in a failed state at the same time.

Notation:

- ▶ Q₀ (t) = probability that TOP event occurs (is true) at time t.
- ▶ q_i (t) = probability that basic event i occurs (is true) at time t.
- $ightharpoonup \overrightarrow{Q}_{j}\left(t
 ight)=$ probability that the minimal cut set j occurs (is true) at time t.

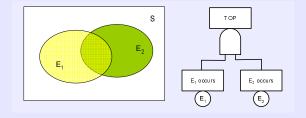
SINGLE AND-GATE

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TRE

FAULT TREE DEFINITION QUALITATIVE ANALYSIS


Logic

CUT SET

Analysis

CUT SET & TOP EVENT PROBABILITIES BASIC EVENT

SUMMAR

When the basic events are independent, the TOP event probability is:

$$Q_0(t) = P(E_1(t) \cap E_2(t)) = P(E_1(t)) P(E_2(t)) = q_1(t) q_2(t)$$

For a single AND-gate with *m* basic events:

$$Q_{0}\left(t\right)=\prod_{i=1}^{m}q_{i}\left(t\right)$$

SINGLE OR-GATE

ENGINEERING RELIABILITY

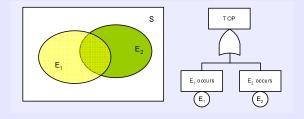
DIAGRAMS

FAILT TREE

DEFINITION QUALITATIV

Logic

CUT SI


QUANTIT

CUT SET & TOP EVENT

PROBABILITIES

BASIC EVENT
PROBABILITY

SUMMAI

When the basic events are independent, the TOP event probability is:

$$Q_{0}(t) = P(E_{1}(t) \cup E_{2}(t)) = P(E_{1}(t)) + P(E_{2}(t)) - P(E_{1}(t) \cap E_{2}(t))$$

= $q_{1}(t) + q_{2}(t) - q_{1}(t) q_{2}(t) = 1 - (1 - q_{1}(t)) (1 - q_{2}(t))$

For a single OR-gate with m basic events:

$$Q_0(t) = 1 - \prod_{i=1}^{m} (1 - q_i(t))$$

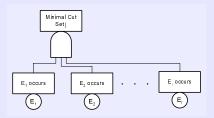
CUT SET PROBABILITY

ENGINEERING RELIABILITY

DIAGRAMS

EATHT TOE

FAULT TREE DEFINITION QUALITATIVE


ANALYSIS

CUT SET

QUANTITA

CUT SET & TOP EVENT PROBABILITIES

PROBABILITIE BASIC EVENT PROBABILITY

- ▶ A minimal cut set fails if and only if all basic events E_1, \ldots, E_r fail at the same time.
- Assume the r basic events are independent and the probability of failure of the i^{th} event is $q_{i,i}$, i = 1, ..., r.
- ▶ The probability of failure of minimum cut set *j* is

$$\widecheck{Q}_{j}\left(t\right)=\prod_{i=1}^{r}q_{j,i}\left(t\right)$$

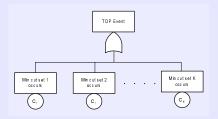
TOP EVENT PROBABILITY

ENGINEERING RELIABILITY

DIAGRAMS

EATH T TREE

FAULT TREE DEFINITION OUALITATIV


ANALYSIS

Cur Sp

OUANTITA

CUT SET & TOP

PROBABILITIES
BASIC EVENT

- The top event if at least one min cut set occurs.
- ▶ In general, some of the min cut sets will contain common elements, so we cannot assume they are independent.
- ▶ The best we can do is derive the upper bound

$$Q_0(t) \le 1 - \prod_{i=1}^{K} \left(1 - \widecheck{Q}_i(t)\right)$$

SUMMARY

ENGINEERING RELIABILITY

DIAGRAMS

FAULT TREES

FAULT TRE

DEFINITIO

ANALYSIS

Locu

CUT SET

ANALYSIS

CUT SET & TO

EVENT

BASIC EVENT