
Introduction to Lua

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua


Lua is…

• ...an scripting language:

• Robust, fast, portable, extensible, small, and open

• Lua is similar to other scripting languages such as Perl, Pyton, Ruby, and 

JavaScript

• We can also use Lua as a data description language, such as XML and JSON

• Finally, Lua is an extensible extension language, focusing on multi-language 

development



Lua in Games

• “It is easy to see why Lua is rapidly becoming the de facto standard for game 

scripting” - Artificial Intelligence for Games, Morgan Kaufmann, 2006. 

• “It’s quite possible that game developers will look back at the 2000s as the 

decade of Lua” - Game Programming Gems 5, Charles River Media, 2005. 

• “A TREMENDOUS amount of this game is written in Lua. The engine, including 

the Lua interpreter, is really just a small part of the finished product.” - Bret 

Mogilefsky, programador-chefe do jogo Grim Fandango.

• Lua is used by games in all platforms and genres: mobile, consoles, PCs, FPS, 

strategy, casual, MMORPGs…



Lua in Games



But not just games…

• Scripting and template language for Wikipedia

• Interactive applications on the Brazilian Digital TV standard (Ginga)

• Embedded software: printers (Olivetti, Océ), routers (Cisco), telephones and 

smartphones (several, including Huawei), smart tvs (Samsung), Logitech 

keyboards, Lego Mindstorms...

• Security: scripting vulnerability scanners (nmap, Wireshark, Snort)

• A million lines of Lua code makes the bulk of Adobe Photoshop Lightroom, and 

several other applications have Lua as a scripting language: VLC, Tex, vim, 

lighttpd, Apache, nginx… 



Why use Lua?

• Portability

• Simplicity

• Small size

• Embeddability

• Efficiency



Portability

• Lua runs in practically all known platforms

• Not just “famous” ones such as Windows, Linux, *BSD, OS X, Android, iOS, 

Windows Mobile, …

• … but lots of embedded platforms that do not have even operating systems 

and run Lua on the “bare metal”

• If it has a C cross-compiler and about 64Kb of free RAM, it can run Lua

• Lua is written in a common subset of C and C++, and the core of the language 

has very few dependencies on libc



Simplicity and small size

• Just a small set of powerful primitives

• The reference manual, documenting the language, the C interface, and the 

standard library, has about 100 pages

• Mechanisms instead of policies for higher-level features such as object 

orientation and concurrency

• Less than 200Kb of compiler code, of which less then 100Kb is the core, the 

rest is the optional standard library



Embeddability

• The Lua interpreter is a library for C programs

• The API for communication with C is simple and well-defined

• C programs have bi-directional communication, with Lua values going from the 

application to Lua and back with ease, and no marshalling

• Programs in other languages can easily consume the API, as long as the 

language can interface with C code: C++, Java, FORTRAN, C#, Pascal, Perl, 

Python...

• Yes, even other scripting languages; a large application that embeds Lua for 

scripting is a version control system written in Python



Efficiency

• Independent benchmarks show Lua as the fastest language in the class of 

interpreted scripting languages

• An alternative implementation, LuaJIT, provides performance similar to compiled

languages such as Java



How Lua started

• Lua was born in 1993 inside PUC-Rio, at the Tecgraf, PUC-Rio’s Computer 

Graphics Laboratory

• Tecgraf needed an structured language that non-programmers could use for 

data description tasks

• The language needed to be portable, as Tecgraf had heterogeneous hardware, 

and needed to interface easily with C, as the applications were written in C

• Not many options at the time that fulfilled all prerequisites, so they decided to 

create their own language



Lua 1

• Lua 1.0 was implemented as a library, in less then 6000 lines of C

• “The simplest thing that could possibly work”: compiler used lex and yacc, 

simple stack based virtual machine, linked lists for associative arrays

• Some of the syntax still lives in the current version:

• Lua 1.1 just added a reference manual, and a cleaned-up C API

function track(t)
if type(t.x) ~= "number" then

print("invalid 'x' value")
end
if type(t.y) ~= "number" then

print("invalid 'y' value")
end

end
t1 = @track{ x = 10.3, y = 25.9, title = "depth" }



Lua 2

• From Lua 2.1 (February 1995) to Lua 2.5 (November 1996)

• Object oriented programming via delegation

• Pattern matching in the standard library

• Hooks for writing debuggers

• First users outside Tecgraf, with papers in Software: Practice and Experience

and Dr. Dobb's Journal

• LucasArts begins using Lua in games



Lua 3

• From Lua 3.0 (September 1997) to Lua 3.2 (September de 1999)

• Anonymous functions and a restricted form of closures give better support for 

functional programming, which would mature in Lua 5

• Major refactoring in the source code

• The next version brings big changes to the C API, so some applications from 

this time still embed this version of Lua



Lua 4

• A single version, Lua 4.0, released on November 2000

• C API completely redone, using the stack model that we will see in this course

• An application can now have several independent instances of the Lua

interpreter

• The standard library has been rewritten to use just the public C API, reinforcing 

the separation between the core and the standard libraries



Lua 5

• From Lua 5.0 (April 2003) to Lua 5.2, the current version, released December 

2011

• Maturity of the language, and the release of the “Programming in Lua” book

• Several big changes: metatables, true lexical scope for anynonymous functions, 

the module system, coroutines, lexical environments…

• Changes in the implementation: more efficient register-based virtual machine, 

replacing the stack-based one, an incremental garbage collector for shorter 

pauses

• The implementation now has around 20.000 lines of code, 3x Lua 1.0



Lua today

• Current license is the MIT license, free for both non-commercial and 

commercial use

• Open language, but closed development: new releases are still the 

responsibility of the three original authors

• Big community participation in the lua-l mailing list and the lua-users wiki

• A package manager, LuaRocks, and alternative Lua implementations: LuaJIT, 

JVM, .NET, JavaScript...

• Several frameworks for developing mobile games: Corona, Gideros, Codea, 

MOAI...


