
Programming in Lua – More about Functions

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua


Iterating over ...

• You can collect and then iterate over all the extra arguments to a variadic

function using ... inside a table constructor:

• If any of the extra arguments is nil then { ... } will not be an array, so you need to 

use the table.pack function to collect the arguments in a table with the field “n” 

set to the number of arguments:

> t = table.pack(1, nil, 3)
> for i = 1, t.n do print(t[i]) end
1
nil
3

function add(...)
local sum = 0
for _, n in ipairs({ ... }) do
sum = sum + n

end
return sum

end



table.unpack

• The flip side of table.pack is the function table.unpack, to return all 

elements of an array in order:

• Using table.unpack this way is only guaranteed to work for proper arrays 

(without holes)

• You can pass two more arguments to table.unpack, for the starting and ending 

indices, and unpack will return all elements in the interval regardless of holes

> print(table.unpack{ 1, 2, 3, 4 })
1       2       3       4

> a = { [2] = 5, [5] = 0 }
> print(table.unpack(a, 1, 5))
nil     5       nil     nil 0



“Named” arguments

• You can simulate a function that takes named arguments with a function that 

takes a record:

• If you are calling a function and passing a single table constructor, you can omit 

the parentheses:

• You can put spaces between the function and {, but it is good style to omit the 

spaces

function rename(args)
return os.rename(args.old, args.new)

end

rename{ new = "perm.lua", old = "temp.lua" }



Lexical scoping

• Any local variable visible in the point where a function is defined is also visible 

inside the function (as long as it is not shadowed by parameters or local 

variables inside the function):

• The derivate function takes a function and returns another function, and is an 

example of a higher-order function:

function derivative(f, dx)
dx = dx or 1e-4
return function (x)

-- both f and dx visible here!
return (f(x + dx) - f(x)) / dx

end
end

> df = derivative(function (x) return x * x * x end)
> print(df(5))
75.001500009932



Closures

• We say that a function closes over the local variables from its surroundings that 

the function uses, so we call these functions closures

• A closure can not only read but also assign to the local variables it closes over:

• Each call to counter() creates a new closure

• Each closure closes over a different instance of n

function counter()
local n = 0
return function ()

n = n + 1
return n

end
end

> c1 = counter()
> c2 = counter()
> print(c1())
1
> print(c1())
2
> print(c2())
1



Closures and sharing

• Closures do not close over copies of local variables, but over the variables 

themselves, so two closures can share a single variable:

• Counter() now returns two closures that share the same n

• And the only way to access n is through the closures!

function counter()
local n = 0
return function (x)

n = n + (x or 1)
return n

end,
function (x)
n = n - (x or 1)
return n

end
end

> inc, dec = counter()
> print(inc(5))
5
> print(dec(2))
3
> print(inc())
4



Callbacks

• Lua closures are a nice and lightweight mechanism for callbacks; for example, 

table.sort takes as optional second argument a callback that must tell 

whether element a comes before element b in the sorted array:

• Callbacks are also very common in GUI code, as a way of responding to user 

events, and for asynchronous code

> a = { "Python", "Lua", "C", "JavaScript", "Java", "Lisp" }
> table.sort(a, function (a, b) return a > b end)
> print_array(a)
{ Python, Lua, Lisp, JavaScript, Java, C }



Functional Programming

• Functional programming is a programming style where we program using 

immutable values and higher-order functions

• Lua is in essence an imperative language, so functional programming is not the 

usual style, but we can easily do functional programming using Lua

• Functional languages commonly use linked lists to represent sequences of 

elements, as they play well with immutability

• We will use Lua arrays, which will have different performance characteristics, 

but will be more compact



map and filter

• The map function iterates over a sequence, applying a function to each element 

and collecting the results in another sequence:

• Filter iterates over a sequence, collecting the elements that pass a predicate:

function map(f, l)
local nl = {}
for i, x in ipairs(l) do
nl[i] = f(x)

end
return nl

end

function filter(p, l)
local nl = {}
for _, x in ipairs(l) do
if p(x) then
nl[#nl+1] = x

end
end
return nl

end

> a = { 1, 2, 3, 4, 5 }
> b = filter(function (x) return x % 2 == 1 end, a)
> print_array(b)
{ 1, 3, 5 }
>

> a = { 1, 2, 3, 4, 5 }
> b = map(function (x) return x * x end, a)
> print_array(b)
{ 1, 4, 9, 16, 25 }



Folds

• A fold is a reduction of a sequence using a binary operation and a seed

• A left fold starts by applying the operation to the seed and the first element, then 

applying the operation to the result and the second element, and so on

• A right fold starts by applying the operation to the last element and the seed, 

then applying the operation to the second-to-last element and the result, and so 

on

function foldl(op, z, l)
for _, x in ipairs(l) do
z = op(z, x)

end
return z

end

function foldr(op, z, l)
for i = #l, 1, -1 do
z = op(l[i], z)

end
return z

end



Currying

• A curried function is a function that, instead of taking all of its parameters at 

once, takes a proper prefix of them and then returns a (possibly also curried) 

function that takes the rest of the parameters; for example, the following is a 

curried version of map:

• Currying makes it easy to do partial evaluation of functions

function map(f)
return function(l)

local nl = {}
for i, x in ipairs(l) do
nl[i] = f(x)

end
return nl

end
end

> square = map(function (x) return x * x end)
> print_array(square{ 1, 5, 9 })
{ 1, 25, 81 }



Quiz

• What is wrong with the function named below, that turns a function with 

positional arguments into a function with named arguments? How to fix it?

function named(f, names)
return function (args)

local l = map(function (name) return args[name] end, names)
f(table.unpack(l))

end
end

rename = named(os.rename, { “old”, “new” })
rename{ old = “old.txt”, new = “new.txt” }


