
Programming in Lua – Metatables

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Metatables

• A metatable modifies the behavior of another table; by setting a metatable with

appropriate fields, you can:

• Use arithmetic, concatenation, and relational operators

• Override the behavior of ==, ~=, and # operators

• Override the behavior of the tostring, pairs, and ipairs built-in functions

• Provide values for missing fields and intercept the creation of new fields

• Call a table as a function

Scope of metatables

• Each table can have its own metatable, which will modify just the behavior of

that single table

• But several tables can share a single metatable, so they will all have similar

behavior

• The built-in function setmetatable changes the metatable of a table, and

returns the table

• The built-in function getmetatable returns the metatable of a table (or nil if it

does not have one)

• It is not good programming style to modify a metatable after assigning it to a

table, as this may impact performance

Metamethods

• You specify the operations that a metatable will modify by setting metamethods

• A metamethod is a function associated with a specially named field

• There are 19 metamethods: __add, __sub, __mul, __div, __mod, __pow,
__unm, __concat, __len, __eq, __lt, __le, __index, __newindex,
__call, __tostring, __ipairs, __pairs, __gc

• Almost all metamethods must be functions, except for __index and

__newindex, which can also be tables; using a table for __index is the basis of

single-inheritance OO programming in Lua

Complex numbers

• As a motivating example, we will use metamethods to augment the complex

numbers of unit 9 – Modules with several operations:

• Addition to reals and other complex numbers with + (the same techniques

will work for the other arithmetic operations)

• Structural comparison for equality (two complex numbers are equal their real

and imaginary parts are equal)

• Modulus with #

• Pretty-printing with tostring

Sharing a metatable

• We first create a table private to the module and set it as the metatable for each

complex number we create with new:

• This metatable gives us a nice test to see if an arbitrary value is a complex

number or not:

local mt = {}

local function new(r, i)
return setmetatable({ real = r or 0, im = i or 0 }, mt)

end

local function is_complex(v)
return getmetatable(v) == mt

end

Overloading + with __add

• The add function already adds two complex numbers; if we assign it to the

__add field of the metatable, + will begin working with a pair of complex

numbers:

• Let us see what happens when we add a real to a complex:

local function add(c1, c2)
return new(c1.real + c2.real, c1.im + c2.im)

end

mt.__add = add

> c1 = complex.new(2, 3)
> c2 = complex.new(1, 5)
> print(complex.tostring(c1 + c2))
3+8i

> c3 = c1 + 5
.\complex.lua:20: attempt to index local 'c2' (a number value)
stack traceback:

.\complex.lua:20: in function '__add'
stdin:1: in main chunk
[C]: in ?

Arithmetic resolution

• What is happening? Lua is calling the __add metamethod of the complex

number! If the left operand has an __add metamethod Lua will call it. We can

take advantage of that:

• Now adding a real to a complex works:

local function add(c1, c2)
if not is_complex(c2) then
return new(c1.real + c2, c1.im)

end
return new(c1.real + c2.real, c1.im + c2.im)

end

> c1 = complex.new(2, 3)
> c3 = c1 + 5
> print(complex.tostring(c3))
7+3i

Arithmetic resolution (2)

• What about adding a complex to a real?

• If the left operand does not have a metamethod and the second has, Lua will

call the metamethod of the second operand! This gives us the final form of add:

> c3 = 5 + c1
.\complex.lua:20: attempt to index local 'c1' (a number value)
stack traceback:

.\complex.lua:20: in function '__add'
stdin:1: in main chunk
[C]: in ?

local function add(c1, c2)
if not is_complex(c1) then
return new(c2.real + c1, c2.im)

end
if not is_complex(c2) then
return new(c1.real + c2, c1.im)

end
return new(c1.real + c2.real, c1.im + c2.im)

end

> c3 = 5 + c1
> print(complex.tostring(c3))
7+3i

Equality

• The metamethod __eq controls both == and ~=

• It follows slightly different rules from arithmetic, as Lua will only call the

metamethod if both operands have the same metatable. This gives us a simple

implementation of equality for complex numbers:

• The disadvantage is that comparisons of complex numbers and reals will

always be false, even if the imaginary part is zero

local function eq(c1, c2)
return (c1.real == c2.real) and (c1.im == c2.im)

end

mt.__eq = eq

> c1 = complex.new(1, 2)
> c2 = complex.new(2, 3)
> c3 = complex.new(3, 5)
> print(c1 + c2 == c3)
true
> print(c1 ~= c2)
true

Overloading # and tostring

• Both the __len and __tostring metamethods work in a similar way: they receive

the table and should return their result; this makes adding them to our complex

numbers straightforward:

• print uses tostring

local function modulus(c)
return math.sqrt(c.real * c.real + c.im * c.im)

end

mt.__len = modulus

local function tos(c)
return tostring(c.real) .. "+" .. tostring(c.im) .. "i"

end

mt.__tostring = tos

> c1 = complex.new(3, 4)
> print(#c1)
5
> print(tostring(c1))
3+4i
> print(c1)
3+4i

Relational operations

• The metamethod for < (__lt) works just like the arithmetic metamethods; for >,

lua uses __lt with the operands reversed

• The metamethod for <= (__le) also works like an arithmetic metamethod, but

<= will use __lt if __le is not available, reversing the operands and negating

• Why two metamethods, then? For partial orders:

local function le(c1, c2)
if not is_complex(c1) then
return (c1 <= c2.real) and (c2.im >= 0)

end
if not is_complex(c2) then
return (c1.real <= c2) and (c2.im <= 0)

end
return (c1.real <= c2.real) and (c1.im <= c2.im)

end

mt.__le = le

local function lt(c1, c2)
return c1 <= c2 and not (c2 <= c1)

end

mt.__lt = lt

__index and __newindex

• If the metatable has an __index metamethod Lua will call it, passing the table

and the key, whenever the key cannot be found; what the metamethod returns

is the result of the indexing operation

• If the metatable has a __newindex metamethod Lua will call it, passing the

table, the key and the value, whenever Lua is assigning to a key that is not

present

• A common application of both metamethods is to use them in concert with an an

empty table to act as a proxy for another table; the proxy is kept empty so all

indexing operations are intercepted

• Both __index and __newindex can be tables instead of functions; in this case

Lua will redo the indexing operation on the this table

A counting proxy

local mt = {}

function mt.__index(t, k)
t.__READS = t.__READS + 1
return t.__TABLE[k]

end

function mt.__newindex(t, k, v)
t.__WRITES = t.__WRITES + 1
t.__TABLE[k] = v

end

local function track(t)
local proxy = { __TABLE = t, __READS = 0, __WRITES = 0}
return setmetatable(proxy, mt)

end

return { track = track }

> proxy = require "proxy"
> t = proxy.track({})
> t.foo = 5
> print(t.foo)
5
> t.foo = 2
> print(t.__READS, t.__WRITES)
1 2

Quiz

• We can try to work around the limitation of __eq so we can have

complex.new(2,0) == 2 by making complex.new return a real if the

imaginary part is 0. Which operations will continue to work with this change, and

which will not work anymore?

