
Programming in Lua – C API Basics

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Extension and Extensible

• Lua is an extensible language – we can extend its functionality using libraries

written in other languages (mostly C)

• Lua is an extension language – we can extend the functionality of applications

written in other languages with Lua code

• In Lua, these are two sides of the same coin!

• The same API that we use to call Lua from C, for extending an application, is

the API we use to call C from Lua, to implement C modules

• All of the Lua standard library, and the standalone interpreter/REPL, are

implemented using this API

C API

• The C API has a few dozen functions to read and write global variables, call

functions and chunks, create new tables, read and write table fields, export C

functions to Lua, etc.

• Functions of the C API are unsafe: it is the responsibility of the programmer to

make sure they are called with the right arguments, and in the correct context

• This is C programming, so segmentation faults and memory corruption await

the careless!

• The API is simple and flexible, but it is a powerful tool, and is not easy to use

A simple REPL

• The code below implements a very primitive REPL:
#include <stdio.h>
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"

int main (void) {
char buff[256]; int error;
lua_State *L = luaL_newstate(); /* opens Lua */
luaL_openlibs(L); /* opens standard libraries */
printf("> ");
while (fgets(buff, sizeof(buff), stdin) != NULL) {
error = luaL_loadstring(L, buff) || lua_pcall(L, 0, 0, 0);
if (error) {
fprintf(stderr, "%s\n", lua_tostring(L, -1));
lua_pop(L, 1); /* pop error message from the stack */

}
printf("> ");

}
lua_close(L);
return 0;

}

Compiling and running

• We can compile and link the code with the Lua:

• Depending on the system, you may need to pass an include path and library

path, and use a different name for the Lua library (-llua)

$ cc –o repl repl.c –llua
$ repl
> print(2 + 2)
4
> a = 5
> print(a)
5
> print("foo" + 5)
[string "print("foo" + 5)..."]:1: attempt to perform arithmetic on a string value

Lua states

• The Lua interpreter does not define any C global variables; it keeps its state in a

data structure called just a Lua state

• Calling luaL_newstate instantiates a new Lua interpreter and its corresponding

state; all other API functions take this state as the first argument

• A fresh state does not have any Lua global variables defined, not even the built-

in functions; luaL_openlibs loads all built-in functions and modules in the new

state

• We will use a single Lua state in our examples, but an application is free to

have multiple Lua states, and they are completely independent

Loading and calling a chunk

• The luaL_loadstring function loads a chunk of Lua code

• If there are no syntax errors, this function returns 0 and pushes a function that

executes the code in the Lua stack

• If the chunk has syntax errors, luaL_loadstring returns and error code, and

pushes the error message in the stack

• lua_pcall is the C API analogue of pcall, and pops the function from the

stack and calls it; if there were errors it returns an error code and pushes the

error message in the stack

• In case of errors, the error message will be on the top of the stack; we get it with

lua_tostring and pop it before looping

The Lua stack

• All communication between Lua and C code is done through the Lua stack

• The stack holds Lua values, and C API functions usually pop values they need

from the stack and push values they produce on the stack

• Using the stack may seem awkward at first, but it greatly simplifies both the API

and the Lua implementation, specially garbage collection

• It is your responsibility to make sure the stack has enough “slots” to do what

you want, and a fresh stack begins with space for 20 slots; if you need more,

use lua_checkstack:

sucess = lua_checkstack(L, 50); /* make sure there is space to push 50 values */

Pushing values

• The C API has functions to push atomic values:

• You can also push a fresh table with:

• Later we will see how we can push C functions, and arbitrary data using

userdata

void lua_pushnil (lua_State *L);
/* 0 pushes false, anything else pushes true */
void lua_pushboolean (lua_State *L, int bool);
void lua_pushnumber (lua_State *L, double n);
/* be careful in 64-bit platforms */
void lua_pushinteger (lua_State *L, ptrdiff_t i);
void lua_pushunsigned(lua_State *L, unsigned int u);
/* for strings with embedded zeros */
void lua_pushlstring (lua_State *L, const char *s, size_t len);
/* this just calls pushlstring with strlen(s) */
void lua_pushstring (lua_State *L, const char *s);

void lua_newtable(lua_State *L);

Querying elements

• API functions follow a LIFO stack discipline, but Lua does not force it in the C

code that manipulates the stack

• C code can reference any position in the stack with indices

• Positive indices (from 1) count from the bottom to the stack and up; negative

indices (from -1) count from the top of the stack and down; for example, -1 is

always the top slot, -2 is the slot below the top, and so on

• The top is independent from how many slots the stack has available; a fresh

stack has 20 available slots, but the top is 0, as there is nothing in the stack

Type checking

• The lua_type function is the analogue of type:

• lua_type returns a numeric code, but there are constants for the eight types:

LUA_TNIL, LUA_TBOOLEAN, LUA_TNUMBER, LUA_TSTRING, LUA_TTABLE,

LUA_TTHREAD, LUA_TUSERDATA, LUA_TFUNCTION

• lua_typename turns the numeric code in the same string returned by type

int lua_type (lua_State *L, int index);
const char *lua_typename (lua_State *L, int type);

Getting atomic values out

• The API has several functions to extract atomic values from the stack (while

leaving them there):

• lua_toboolean works for any type, with the usual Lua rules (anything is true

except for nil and false)

• lua_tolstring returns NULL if the value is not a string, but it converts numbers

to strings; the other functions return 0 if the value is not a number

• The pointer returned by lua_tolstring is only guaranteed to be valid as long as

the value is in the stack, and the contents cannot be modified; make a copy if

you want the string to survive the value, or want to change it

int lua_toboolean (lua_State *L, int index);
const char *lua_tolstring (lua_State *L, int index, size_t *len);
double lua_tonumber (lua_State *L, int index);
ptrdiff_t lua_tointeger (lua_State *L, int index);
unsigned int lua_tounsigned(lua_State *L, int index);

Stack movement

• There are several functions to move the stack contents around, which is useful

sometimes:

• Remember that all indices can be positive or negative

int lua_gettop (lua_State *L); /* index of top element */
/* sets the new top, popping values or pushing nils */
void lua_settop (lua_State *L, int index);
/* pushes a copy of the value at index */
void lua_pushvalue(lua_State *L, int index);
/* removes the value at index, shifting down */
void lua_remove (lua_State *L, int index);
/* pops the value at the top and inserts into index, shifting up */
void lua_insert (lua_State *L, int index);
/* pops the value at the top and inserts into index, replacing what is there */
void lua_replace (lua_State *L, int index);
/* copy the value at "from" to "to", replacing what is there */
void lua_copy (lua_State *L, int from, int to);

Quiz

• Assume the stack is empty. What will be its contents after the following

sequence of calls?

lua_pushnumber(L, 3.5);
lua_pushstring(L, "hello");
lua_pushnil(L);
lua_pushvalue(L, -2);
lua_remove(L, 1);
lua_insert(L, -2);

