Programming in Lua — C API Basics

presrarenicg laguage e

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

@ Lablua

Extension and Extensible

Lua is an extensible language — we can extend its functionality using libraries
written in other languages (mostly C)

Lua is an extension language — we can extend the functionality of applications
written in other languages with Lua code

In Lua, these are two sides of the same coin!

The same API that we use to call Lua from C, for extending an application, is
the APl we use to call C from Lua, to implement C modules

 All of the Lua standard library, and the standalone interpreter/REPL, are
Implemented using this API

@ Lablua

C API

« The C API has a few dozen functions to read and write global variables, call
functions and chunks, create new tables, read and write table fields, export C
functions to Lua, etc.

* Functions of the C API are unsafe: it is the responsibility of the programmer to
make sure they are called with the right arguments, and in the correct context

« This is C programming, so segmentation faults and memory corruption await
the careless!

« The API is simple and flexible, but it is a powerful tool, and is not easy to use

A simple REPL

« The code below implements a very primitive REPL:

#include <stdio.h>
#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"

int main (void) {

char buff[256]; int error;
lua_State *L = lual_newstate(); /* opens Lua */

lual_openlibs(L);
printf("> ");

/* opens standard libraries */

while (fgets(buff, sizeof(buff), stdin) != NULL) {
error = lual_loadstring(L, buff) || lua_pcall(L, @, 0, 0);

if (error) {

fprintf(stderr,

lua_pop(L, 1);
}
printf("> ");
}
lua_close(L);
return O;

"%s\n", lua_tostring(L, -1));
/* pop error message from the stack */

@ Lablua

Compiling and running

« We can compile and link the code with the Lua:

cc -0 repl repl.c -1llua
repl
print(2 + 2)

a=>5
print(a)

$
$
>
4
>
>
5
> print("foo" + 5)

[string "print("foo" + 5)..."]:1: attempt to perform arithmetic on a string value
« Depending on the system, you may need to pass an include path and library

path, and use a different name for the Lua library (-11ua)

@ Lablua

Lua states

« The Lua interpreter does not define any C global variables; it keeps its state in a
data structure called just a Lua state

« Calling luaL_newstate instantiates a new Lua interpreter and its corresponding
state; all other API functions take this state as the first argument

» A fresh state does not have any Lua global variables defined, not even the built-
In functions; lual_openlibs loads all built-in functions and modules in the new

State

« We will use a single Lua state in our examples, but an application is free to
have multiple Lua states, and they are completely independent

@ Lablua

Loading and calling a chunk

 The 1luaL_1loadstring function loads a chunk of Lua code

« If there are no syntax errors, this function returns 0 and pushes a function that
executes the code in the Lua stack

~_———— ———

« If the chunk has syntax errors, luaL_loadstring returns and error code, and
pushes the error message in the stack

 lua_pcallisthe C API analogue of pcall, and pops the function from the
stack and calls it; if there were errors it returns an error code and pushes the
error message in the stack

* In case of errors, the error message will be on the top of the stack; we get it with
lua_tostring and pop it before looping

@ Lablua

The Lua stack

« All communication between Lua and C code is done through the Lua stack

« The stack holds Lua values, and C API functions usually pop values they need
from the stack and push values they produce on the stack

» Using the stack may seem awkward at first, but it greatly simplifies both the API
and the Lua implementation, specially garbage collection

« It is your responsibility to make sure the stack has enough “slots” to do what
you want, and a fresh stack begins with space for 20 slots; if you need more,
use lua_checkstack:

sucess = lua_checkstack(L, 50); /* make sure there is space to push 50 values */

Pushing values

« The C API has functions to push atomic values:

void lua_pushnil (lua_State *L);

/* 0 pushes false, anything else pushes true */

void lua_pushboolean (lua_State *L, int bool);

void lua_pushnumber (lua_State *L, double n);

/* be careful in 64-bit platforms */ SB
void lua_pushinteger (lua_State *L, ptrdiff_t i); (J 4 6ﬁjd\ 2262
void lua_pushunsigned(lua_State *L, unsigned int u); \ U Mo

/* for strings with embedded zeros */

void lua_pushlstring (lua_State *L, const char *s, size t len);

/* this just calls pushlstring with strlen(s) */

void lua_pushstring (lua_State *L, const char *s);

* You can also push a fresh table with:

void lua_newtable(lua_State *L);

 Later we will see how we can push C functions, and arbitrary data using
userdata

@ Lablua

Querying elements

API functions follow a LIFO stack discipline, but Lua does not force it in the C
code that manipulates the stack

C code can reference any position in the stack with indices

Positive indices (from 1) count from the bottom to the stack and up; negative
Indices (from -1) count from the top of the stack and down; for example, -1 is
always the top slot, -2 is the slot below the top, and so on

The top is independent from how many slots the stack has available; a fresh
stack has 20 available slots, but the top is 0, as there is nothing in the stack

@ Lablua

Type checking

 The 1ua_type function is the analogue of type:

int lua_type (lua_State *L, int index);
const char *lua_typename (lua_State *L, int type);

« lua_type returns a numeric code, but there are constants for the eight types:
LUA TNIL, LUA TBOOLEAN, LUA TNUMBER, LUA_TSTRING, LUA TTABLE,
LUA TTHREAD, LUA_TUSERDATA, LUA_ TFUNCTION

« lua_typename turns the numeric code in the same string returned by type

@ Lablua

Getting atomic values out

The API has several functions to extract atomic values from the stack (while
leaving them there):

int lua_toboolean (lua_State *L, int index);
const char *lua_tolstring (lua_State *L, int index, size t *len);
double lua_tonumber (lua_State *L, int index);

ptrdiff t lua_tointeger (lua_State *L, int index);
unsigned int lua_tounsigned(lua_State *L, int index);

lua_toboolean works for any type, with the usual Lua rules (anything is true
except for nil and false)

lua_tolstring returns NULL if the value is not a string, but it converts numbers
to strings; the other functions return 0O if the value is not a number

The pointer returned by lua_tolstring is only guaranteed to be valid as long as
the value is in the stack, and the contents cannot be modified; make a copy if
you want the string to survive the value, or want to change it

@ Lablua

Stack movement

 There are several functions to move the stack contents around, which is useful
sometimes:

int(:iua gettoﬁj (lua_State *L); /* index of top element */

/* sets the new top, popping values or pushing nils */

void lua_settop (lua_State *L, int index);

/* pushes a copy of the value at index */

void lua_pushvalue(lua_State *L,<int index);])

/* removes the value at index, shifting down */

void lua_remove (lua_State *L, int index);

/* pops the value at the top and inserts into index, shifting up */
void lua_insert (lua_State *L, int index);

/* pops the value at the top and inserts into index, replacing what is there */
void lua_replace (lua_State *L, int index);

/* copy the value at "from" to "to", replacing what is there */

. * . . . '
void lua_copy (lua_State *L, int from, int to); _, [‘/C ,/uLVc&/% (Llf/w’“)/

« Remember that all indices can be positive or negative Q(b_ ,\Qﬂ/c% /L ﬁ/
/
/

@ LabLua

|||||||||||||||||||||||||||||

Quiz

 Assume the stack is empty. What will be its contents after the following

sequence of calls? Jz
Wi

lua_pushnumber(L, 3.5);
lua_pushstring(L, "hello");

lua_pushnil(L); L (bQJl°
lua_pushvalue(L, -2);

lua_remove(L, 1); |

yuat , L el
ua_insert(L, -2); el

