
Programming in Lua – Extending Lua

Fabio Mascarenhas

http://www.dcc.ufrj.br/~fabiom/lua

http://www.dcc.ufrj.br/~fabiom/lua

Calling C functions

• There is a mountain of C libraries to do a lot of things: statistics, computer

vision, database access, graphical user interfaces…

• The same API that lets us embed Lua in an application also lets us connect Lua

scripts to C libraries

• To expose a library to Lua, we have to give it an adapter composed of a series

of C functions that:

• Marshall data from Lua

• Call the C functions that do the heavy lifting of the library

• Marshall back the results

The stack from Lua

• When Lua calls a function, the function gets its own private stack; as the stack

in a fresh Lua state, this stack has space for 20 slots

• Unlike the stack in a fresh Lua state, this stack will be populated with the

arguments for the function: index 1 is the first argument, index 2 is the second,

and so on

• When a C function returns, it tells how many values should be popped from the

stack as the return values of the function

• If the function returns 3, the top of the stack is the third returned value, the

second value from the top is the second and the third value from the top is

the first returned value

Writing a C function

• Any C function that we want to call from Lua must have this prototype:

• The function receives the Lua state, and manipulates its stack, and returns how

many return values there are in the top of the stack:

• We can test the function by adding two lines to our simple REPL, just after

opening the standard libraries:

typedef int (*lua_CFunction)(lua_State *L);

static int idiv(lua_State *L) {
int n1 = lua_tointeger(L, 1); /* first argument */
int n2 = lua_tointeger(L, 2); /* second argument */
int q = n1 / n2; int r = n1 % n2;
lua_pushinteger(L, q); /* first return value */
lua_pushinteger(L, r); /* second return value */
return 2; /* return two values */

}

lua_pushcfunction(L, idiv);
lua_setglobal(L, "idiv");

> print(idiv(11, 3))
3 2

Defensive programming

• The idiv function is unsafe: if we pass 0 as the second argument it crashes the

REPL! We can raise a Lua error when that happens, with the luaL_error
function:

• This function never returns, but the C compiler does not know that, so we return

after calling it

• As it is, the function accepts any Lua values as arguments, not just numbers,

because lua_tonumber will convert anything else to 0

• We can be stricter if we use luaL_checkinteger instead of lua_tointeger:

if(n2 == 0) return luaL_error(L, "division by zero");

int n1 = luaL_checkinteger(L, 1);
int n2 = luaL_checkinteger(L, 2);

> print(idiv({}, 5))
[string "print(idiv({}, 5))..."]:1: bad argument #1 to 'idiv' (number expected,
got table)

C modules

• A Lua module is a script that returns the module’s table; a C module is a

dynamic library that exports a function that does the same thing

• C modules have a different search path, stored in package.cpath (and coming

from LUA_CPATH_5_2 or LUA_CPATH environment variables, if present):

• Lua will search for C modules if it has not found a Lua module; once Lua finds

the module’s .so file, it will try to run a function luaopen_modulename

• The module name is the argument passed to require, replacing dots with

underscores, so require "lib.mod" will load lib/mod.so and run

luaopen_lib_mod

> print(package.cpath)
/usr/local/lib/lua/5.2/?.so;/usr/local/lib/lua/5.2/loadall.so;./?.so

luaL_newlib

• The luaL_newlib function helps in packaging a C module; it will take an array of

name/function pairs and create and populate a table with these functions,

leaving the table in the top of the stack:

• luaL_newlib is just a convenience, the following would create and return the

module in the same way:

static const struct luaL_Reg mylib[] = {
{"idiv", idiv},
{NULL, NULL}

};

int luaopen_mylib(lua_State *L) {
luaL_newlib(L, mylib);
return 1;

}

> lib = require "mylib"
> print(lib.idiv(11,3))
3 2

int luaopen_mylib(lua_State *L) {
lua_newtable(L);
lua_pushcfunction(L, idiv);
lua_setfield(L, -2, "idiv");
return 1;

}

Array manipulation

• The C API has two functions for manipulating arrays:

• They are similar to lua_getfield and lua_setfield, but the raw prefix

means that they ignore metatables

• lua_rawlen takes the Lua state and the stack index of a table (or a string) and

returns its length (#), again ignoring metatables; lua_len uses a metatable if

present, but pushes the result instead of returning it

• In general, ignoring metatables on array manipulation is not a problem, as

arrays are a “low-level” data structure, and we want their operations to be quick

void lua_rawgeti(lua_State *L, int index, int key);
void lua_rawseti(lua_State *L, int index, int key);

map in C

• We can use the array functions to write a version of map in C:

• lua_call is like lua_pcall, but propagates errors instead of catching them, so

it has no need for a fourth argument (the optional error handler in lua_pcall)

static int map(lua_State *L) {
int i, n;
luaL_checktype(L, 1, LUA_TFUNCTION); /* f */
luaL_checktype(L, 2, LUA_TTABLE); /* t */
n = lua_rawlen(L, 2); /* #t */
lua_newtable(L); /* new_t */
for(i = 1; i <= n; i++) {

lua_pushvalue(L, 1); /* push f */
lua_rawgeti(L, 2, i); /* push t[i] */
lua_call(L, 1, 1); /* f(t[i]) */
lua_rawseti(L, -2, i); /* pop new_t[i] */

}
return 1;

}

String manipulation

• lua_pushlstring makes a copy of the string, so we can use C “tricks” with the

pointer and the size to push a substring of a string:

• lua_concat(L, n) pops n strings from the stack and concatenates them

(triggering __concat metamethods if necessary)

• lua_pushfstring(L, fmt, …) is like sprintf, but Lua allocates the buffer for

the resulting string, and returns it after pushing the resulting string; Lua owns

this buffer, so do not change it, and make a copy if you want it to survive the

corresponding string

/* pushes the substring of s from i to j (inclusive) */
lua_pushlstring(L, s + i, j - i + 1);

String buffers

• For more complicated efficient string creation in C functions, Lua provides an

API for string buffers:

• The functions in the buffer API keep temporary state in the Lua stack, so the

effect of operations you do on the stack must be neutral between calls to buffer

functions

/* initializes a buffer, stack allocate it */
void luaL_buffinit (lua_State *L, luaL_Buffer *B);
/* pop a string and add it to the buffer */
void luaL_addvalue (luaL_Buffer *B);
/* add C strings to the buffer */
void luaL_addlstring(luaL_Buffer *B, const char *s, size_t l);
void luaL_addstring (luaL_Buffer *B, const char *s);
/* add a character to the buffer */
void luaL_addchar (luaL_Buffer *B, char c);
/* create a Lua string with the buffer contents and push it */
void luaL_pushresult(luaL_Buffer *B);

The registry

• The registry is a table shared by all C modules, kept in a special

LUA_REGISTRYINDEX stack pseudo-index (do not worry, there is no risk of

collision with regular stack indexes)

• It is a regular table, so you can query and update it with the table functions:

lua_getfield, lua_setfield, lua_gettable, lua_settable

• As this table is shared, you have to pick key names carefully, so it will not

collide with other C modules; a good practice is to prefix the key name with the

fully qualified module name (the same one you append to luaopen_)

• Numeric keys are reserved for references, we will see them shortly

References

• We can only take atomic values out of the stack, but we can “take” other values

out of the stack if we use references:

• luaL_ref pops a value and returns a reference to it

• A reference is just an index in the registry, so we can get the push the value

back (in a different function, or even a different module) with lua_rawgeti(L,
LUA_REGISTRYINDEX, ref)

• When we are done with the reference, we can free it with luaL_unref(L,
LUA_REGISTRYINDEX, ref)

• You can get a reference to any value, even nil

int ref = luaL_ref(L, LUA_REGISTRYINDEX);

C closures

• There is just one registry for all the C modules in the system; if you need to

store state local to a single C function, or a single C module, it is best if you use

C closures

• If you use lua_pushcclosure to push a C function, you can pass a third

argument: how many values lua_pushcclosure should pop and put in the

closure

• Inside the function, lua_upvalueindex(i) returns a pseudo-index for the i-th

element in the closure

• A non-existing closure element has a pseudo-index with type LUA_TNONE

Sharing upvalues

• Each C closure has its own set of upvalues, but we can “share” an upvalue

among several closures if we close over a table

• We can use this technique to have a “private registry” among all functions in a C

module:

int luaopen_mylib(lua_State *L) {
lua_newtable(L); /* module */
lua_newtable(L); /* shared table */
/* populate the module with functions, using the 1 upvalue for each */
luaL_setfuncs(L, mylib, 1);
/* the module is in the top now */
return 1;

}

Quiz

• A library is trying to share a counter between inc and dec functions that

decrement the counter using an upvalue, with the initialization function:

• What is going to happen?

int luaopen_counter(lua_State *L) {
lua_newtable(L);
lua_pushinteger(L, 0);
lua_setfuncs(L, mylib, 1);
return 1;

}

