
1

COSC 404
Database System Implementation

Transaction Management

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Transaction Management
Overview

The database system must ensure that the data stored in the
database is always consistent.

There are several possible types of failures that may cause the
data to become inconsistent.

A transaction is an atomic program that executes on the
database and preserves the consistency of the database.
The input to a transaction is a consistent database, AND the

output of the transaction must also be a consistent database.

A transaction must execute completely or not at all.

Page 3

COSC 404 - Dr. Ramon Lawrence

Transaction Management
Motivating Example

Consider a person who wants to transfer $50 from a savings
account with balance $1000 to a checking account with current
balance = $250.
1) At the ATM, the person starts the process by telling the bank

to remove $50 from the savings account.

2) The $50 is removed from the savings account by the bank.

3) Before the customer can tell the ATM to deposit the $50 in
the checking account, the ATM “crashes.”

Where has the $50 gone?

It is lost if the ATM did not support transactions!
The customer wanted the withdraw and deposit to both
happen in one step, or neither action to happen.

Page 4

COSC 404 - Dr. Ramon Lawrence

Transaction Definition
A transaction is an atomic program that executes on the
database and preserves the consistency of the database.

The basic assumption is that when a transaction starts
executing the database is consistent, and when it finishes
executing the database is still in a consistent state.
Do not consider malicious or incorrect transactions.

This assumption is called The Correctness Principle.

Note that the database may be inconsistent during transaction
execution.
For the bank example, the $50 is removed from the savings

account and is not yet in the checking account at some point in
time.

Page 5

COSC 404 - Dr. Ramon Lawrence

Consistency Definition
A database is consistent if the data satisfies all constraints
specified in the database schema. A consistent database is
said to be in a consistent state.

A constraint is a predicate (rule) that the data must satisfy.
Examples:
StudentID is a key of relation Student.

StudentID  Name holds in Student.

No student may have more than one major.

The field Major can only have one of the 4 values: {“BA”,”BS”,”CS”,”ME”}.

The field Year must be between 1 and 4.

Note that the database may be internally consistent but not
reflect the real-world reality.

Page 6

COSC 404 - Dr. Ramon Lawrence

Consistency Issues
There are two major challenges in preserving consistency:
1) The database system must handle failures of various kinds

such as hardware failures and system crashes.

2) The database system must support concurrent execution
of multiple transactions and guarantee that this concurrency
does not lead to inconsistency.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

ACID Properties
To preserve integrity, transactions have the following properties:
Atomicity - Either all operations of the transaction are properly

reflected in the database or none are.

Consistency - Execution of a transaction in isolation preserves
the consistency of the database.

Isolation - Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently

executing transactions. That is, for every pair of transactions Ti and Tj, it
appears to Ti that either Tj, finished execution before Ti started, or Tj
started execution after Ti finished.

Durability - After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

Page 8

COSC 404 - Dr. Ramon Lawrence

Transaction Operations
Since a transaction is a general program, there are an enormous
number of potential operations that a transaction can perform.

However, there are two really important operations:
read(A,t) (or read(A) when t is not important)
Read database element A into local variable t.

write(A,t) (or write(A) when t is not important)
Write the value of local variable t to the database element A.

For most of the discussion, we will assume that the buffer
manager insures that database element is in memory. We could
make the memory management more explicit by using:
input(A)
Read database element A into local memory buffer.

output(A)
Write the block containing A to disk.

Page 9

COSC 404 - Dr. Ramon Lawrence

Fund Transfer Transaction Example
Transaction to transfer $50 from account A to account B:

1. read(A,t)

2. t := t – 50

3. write(A,t)

4. read(B,t)

5. t := t + 50

6. write(B,t)

Page 10

COSC 404 - Dr. Ramon Lawrence

Fund Transfer Transaction Example (2)
Atomicity requirement – If the transaction fails after step 3
and before step 6, the system should ensure that its updates
are not reflected in the database, or inconsistency will result.

Consistency requirement – The sum of A and B is
unchanged by the execution of the transaction.

Isolation requirement – If between steps 3 and 6, another
transaction accesses the partially updated database, it will see
an inconsistent database (A + B is less than it should be).
Can be ensured trivially by running transactions serially, that is

one after the other. However, executing multiple transactions
concurrently has significant benefits.

Durability requirement – Once the user has been notified that
the transaction has completed (i.e., the $50 transfer occurred),
the updates by the transaction must persist despite failures.

Page 11

COSC 404 - Dr. Ramon Lawrence

ACID Properties
Question: Two transactions running at the same time can see
each other's updates. What ACID property is violated?

A) atomicity

B) consistency

C) isolation

D) durability

E) none of them

Page 12

COSC 404 - Dr. Ramon Lawrence

ACID Properties (2)
Question: A company stores a customer's address in the
database. The customer moves and does not tell the company
to update its database. What ACID property is violated?

A) atomicity

B) consistency

C) isolation

D) durability

E) none of them

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Transaction Questions
Example database:

1) Write a transaction to change the name of a student to “Joe
Smith.” Let A represent the database object currently storing
the name.

2) Write a transaction to swap the names of two students with
names A and B.

3) Write a transaction to increase the Year attribute of all
students by 1.

Student(Id,Name,Major,Year)

Page 14

COSC 404 - Dr. Ramon Lawrence

Transaction States
An executing transaction can be in one of several states:
Active - is the initial state. The transaction stays in this state

while it is executing.

Partially committed - A transaction is partially committed after
its final statement has been executed.

Failed - A transaction enters the failed state after the discovery
that normal execution can no longer proceed.

Aborted - A transaction is aborted after it has been rolled back
and the database restored to its prior state before the
transaction. There are two options after abort:
restart the transaction – only if no internal logical error

kill the transaction - problem with transaction itself

Committed - Commit state occurs after successful completion.
May also consider terminated as a transaction state.

Page 15

COSC 404 - Dr. Ramon Lawrence

Transaction State Diagram

Partially
Committed Committed

Aborted

Active

Failed

Page 16

COSC 404 - Dr. Ramon Lawrence

Transaction States
Question: Is it possible for a transaction to be in the aborted
and committed states at different times during its lifetime?

A) yes

B) no

Page 17

COSC 404 - Dr. Ramon Lawrence

Concurrent Executions
Multiple transactions are allowed to run concurrently in the
system. Advantages are:
Increased processor and disk utilization, leading to better

transaction throughput: one transaction can be using the CPU
while another is reading from or writing to the disk.

Reduced average response time for transactions as short
transactions need not wait behind long ones.

Concurrency control schemes are mechanisms to control the
interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database.
We will study concurrency control schemes after examining the

notion of correctness of concurrent executions.

Page 18

COSC 404 - Dr. Ramon Lawrence

Schedules
A schedule is the chronological order in which instructions of
concurrent transactions are executed.
A schedule for a set of transactions must consist of all

instructions of those transactions.

We must preserve the order in which the instructions appear in
each individual transaction.

It is useful to think of a schedule as a journal of the database
actions. It is a historical record that the database keeps as it is
processing transactions.

A serial schedule is a schedule where the instructions
belonging to each transaction appear together.
i.e. There is no interleaving of transaction operations.

For n transactions, there are n! different serial schedules.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Let T1 transfer $50 from A to B, and T2 transfer 10% of the
balance from A to B. Let A=100 and B=200. The following is a
serial schedule, in which T1 is followed by T2:

T1 T2
read(A,t)
t := t – 50
write(A,t)
read(B,o)
o := o + 50
write(B,o)

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)
read(B,o)
o := o + temp
write(B,o)

Example Schedules

After schedule:
A=45, B=255

Is there another
serial schedule?

Page 20

COSC 404 - Dr. Ramon Lawrence

Let T1 and T2 be the transactions defined previously. The
following schedule is not a serial schedule, but it is equivalent
to the previous serial schedule:

T1 T2
read(A,t)
t := t – 50
write(A,t)

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)

read(B,o)
o := o + 50
write(B,o)

read(B,o)
o := o + temp
write(B,o)

Example Schedules (2)

After schedule:
A=45, B=255

Page 21

COSC 404 - Dr. Ramon Lawrence

Example Schedules (3)
The following concurrent schedule does not preserve the value
of the sum A + B: (inconsistent state)

T1 T2
read(A,t)
t := t – 50

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)
read(B,o)

write(A,t)

read(B,o)
o := o + 50
write(B,o)

o := o + temp
write(B,o)

After schedule:
A=50, B=210

Is there another
schedule with a
different result?

Page 22

COSC 404 - Dr. Ramon Lawrence

Correct Schedules
Since the operating system can interleave the operations of
concurrent transactions in any order, the database
management system must ensure that only correct schedules
are possible.

The database system guarantees only correct schedules are
possible by implementing concurrency control protocols that
guarantee that the schedule actually executed is equivalent to
some serial schedule.

Page 23

COSC 404 - Dr. Ramon Lawrence

Schedules
Question: Is the following schedule valid for the two
transactions below?

Schedule:

T1 T2
read(A,t)

read(B,o)

write(A,t)
write(B,o)

read(A,t)
write(A,t)
read(B,o)
write(B,o)

Transaction T1:
read(A,t)
write(A,t)
read(B,o)
write(B,o)

Transaction T2:
read(A,t)
write(A,t)
read(B,o)
write(B,o)

A) yes B) no
Page 24

COSC 404 - Dr. Ramon Lawrence

Why is Concurrency Control Needed?
Concurrency control is needed to ensure that the schedules
executed leave the database in a consistent state.

Examples of concurrency control problems include:
The Lost Update Problem - occurs when two transactions

access the same data item, and one transaction reads the data
item before the other transaction commits its written version.
(The update from this transaction is lost.)

Dirty Read Problem - occurs when a transaction reads a data
value written by another transaction which later aborts.

Incorrect Summary Problem - occurs when a transaction is
calculating an aggregate function and some other transaction(s)
is updating record values that may not all be reflected correctly
in the summation calculation.

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Lost Update Example
The lost update problem occurs when two transactions read
the same value before either of them commits their write.

T1 T2

read(A,t)
t := t – 50

read (A,t)
temp := t *0.1
t = t – temp
write(A,t)

read(B,o)
write(A,t)

write(B,o)

A is written without
T1’s changes!

Page 26

COSC 404 - Dr. Ramon Lawrence

Dirty Read Example
The dirty read (or temporary update) problem occurs when a
transaction reads a value of a later aborted transaction.

T1 T2

read(A,t)
t := t – 50
write(A,t)

read (A,t)
temp := t *0.1
t = t – temp
write(A,t)

read(B,o)
abort If T1 aborts, then T2 has used its

incorrect value of A, and should
not be allowed to commit.

Page 27

COSC 404 - Dr. Ramon Lawrence

Y is updated after its value is used in
summation. (not consistent with X)

Incorrect Summary Example

sum = 0
read(A)
sum = sum + A
...

read(X)
X = X -100
write(X)

read (X)
sum = sum + X
read (Y)
sum = sum + Y
...

read(Y)
Y = Y +100
write(Y)

The incorrect summary problem occurs when a transaction
updates values when another transaction is calculating a sum.

T1 T2

X is updated before its value is
used in summation.

Page 28

COSC 404 - Dr. Ramon Lawrence

Consistency Issues

Question: What consistency issue does this schedule have?

T1 T2

read(A,t)
read (A,t)

write(A,t)

write(B, 10)
read(B,u)

write(C,t)

write(C,t+u)

A) lost update B) dirty read C) incorrect summary D) none
E) more than one

Page 29

COSC 404 - Dr. Ramon Lawrence

Serializability
A schedule is serializable if it is equivalent to a serial schedule.

There are two different forms of serializability:
1. conflict serializability

2. view serializability

We ignore operations other than read and write instructions,
and we assume that transactions may perform arbitrary
computations on data in local buffers in between reads and
writes. Our simplified schedules consist of only read and write
instructions.

Page 30

COSC 404 - Dr. Ramon Lawrence

Conflict Serializability
Conflicting Operations

To understand conflict serializability, we must understand what
it means for two operations to conflict.

Operations Oi and Oj of transactions Ti and Tj respectively,
conflict if and only if there exists some item Q accessed by
both Oi and Oj, and at least one of these operations wrote Q.

Possibilities:
1. Oi = read(Q), Oj = read(Q). Oi and Oj do not conflict.
2. Oi = read(Q), Oj = write(Q). Conflict - order is important
3. Oi = write(Q), Oj = read(Q). Conflict - reverse of #2
4. Oi = write(Q), Oj = write(Q). Conflict - who writes last?

Intuitively, a conflict between Oi and Oj forces a (logical)
temporal order between them. If Oi and Oj are consecutive in a
schedule and they do not conflict, their results would remain
the same even if they had been interchanged in the schedule.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

If a schedule S can be transformed into a schedule S´ by a
series of swaps of non-conflicting instructions, we say that S
and S´ are conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule.

Example of a schedule that is not conflict serializable:

T3 T4
read(Q)

write(Q)
write(Q)

We are unable to swap instructions in the above schedule to obtain
either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

Conflict Serializability

Page 32

COSC 404 - Dr. Ramon Lawrence

Conflict Serializability (3)
The schedule below can be transformed into a serial schedule
by a series of swaps of non-conflicting instructions. It is
conflict serializable.

T1 T2
read(A)
write(A)

read (A)
write(A)

read (B)
write(B)

read (B)
write(B)

What is the serial
schedule?

Page 33

COSC 404 - Dr. Ramon Lawrence

Conflict Serializability Question
Question: Is this schedule conflict serializable?

T1 T2
read(A)

write(A)
read(B)

write(B)
read(C)

read(C)
write(C)

A) yes B) no
Page 34

COSC 404 - Dr. Ramon Lawrence

Serializability Questions
T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

Questions:
1) How many possible serial schedules are there?

2) How many schedules are conflict equivalent to the serial
order (T1 ,T2)?

3) Write one non-serial schedule that is conflict equivalent to
the serial execution (T2 ,T1), if possible.

Note shorthand notation!
E.g. r1(A) = T1 does read(A)

Page 35

COSC 404 - Dr. Ramon Lawrence

Testing for Serializability
It is possible to determine if some schedule of transactions T1,
T2, ..., Tn is serializable using a precedence graph.

A precedence graph is a directed graph where the vertices
are the transactions, and there is an arc from Ti to Tj if the two
transactions conflict, and Ti accessed the data item on which
they conflict earlier.
We may label the arc using the item that was accessed.

Example: r1(X); w1(X); r2(X); r2(Y); w2(Y); r1(Y); w1(Y);
X

Y

T1 T2

Page 36

COSC 404 - Dr. Ramon Lawrence

Precedence Graph Example Schedule
T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

7

Page 37

COSC 404 - Dr. Ramon Lawrence

Precedence Graph for Schedule
y

T1 T2

T5

T3 T4

y
z

z

y,z

Page 38

COSC 404 - Dr. Ramon Lawrence

Test for Conflict Serializability
A schedule is conflict serializable if and only if its precedence
graph is acyclic.

Cycle-detection algorithms exist which take O(n2) time, where n
is the number of vertices in the graph.
Better algorithms take O(n + e) where e is the # of edges.

If the precedence graph is acyclic, the serializability order can
be obtained by a topological sorting of the graph.
This is a linear order consistent with the partial order of the

graph.

For example, one possible serializability order for the previous
example would be:

T5  T1  T3  T2  T4

Page 39

COSC 404 - Dr. Ramon Lawrence

Precedence Graph Questions
Give the precedence graph for the following schedules:

1) r2(B); w2(B); r1(A); w1(A); r1(B); w1(B); r2(A); w2(A);

2) w1(A); w2(B); w3(C); w4(D); w5(E); w5(A);

3) Construct a non-serial schedule with 3 transactions and 3
data items that has a precedence graph containing 6 arcs, but
is still conflict serializable.

Page 40

COSC 404 - Dr. Ramon Lawrence

Other Schedule Properties
There are other desirable schedule properties:

Recoverability - A recoverable schedule insures that a
database can recover from failure even when concurrent
transactions have been executing.

Cascade-Free - A cascading rollback occurs when a single
transaction failure leads to a series of transaction rollbacks. A
cascade-free schedule avoids cascading rollbacks.

Strict - Strict schedules simplify recovery procedures in the
advent of failure.

Each of these properties subsumes the next. That is, all strict
schedules are also cascade-free and recoverable. All
cascade-free schedules are recoverable.

Page 41

COSC 404 - Dr. Ramon Lawrence

All Schedules

Schedule Properties Diagram

Recoverable

Cascade-Free

Strict

Serializable

Serial

Page 42

COSC 404 - Dr. Ramon Lawrence

Schedule Properties Questions
Question: How many of the following statements are true?
i) Every serial schedule is a strict schedule.

ii) A serializable schedule may not be recoverable.

iii) Every cascade-free schedule is also a strict schedule.

iv) There are more recoverable schedules than cascade-free
schedules.

A) 0

B) 1

C) 2

D) 3

E) 4

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Recoverability
We need to address the effect of transaction failures on
concurrently running transactions.
Let a transaction Tj read a data value written by another

transaction Ti . If Ti aborts, then Tj should also abort because
the data it read was inconsistent.

A recoverable schedule has the property that if a transaction Tj
reads a data item previously written by a transaction Ti , the
commit of Ti appears before the commit of Tj.
Note that if Ti aborts before Tj commits then the schedule is

recoverable. It is not recoverable if Ti aborts after Tj commits.

Obviously, the database system wants to only allow
recoverable schedules in advent of failures.

Page 44

COSC 404 - Dr. Ramon Lawrence

Non-Recoverable Schedules
The following schedule is not recoverable if T9 commits
immediately after the read:

T8 T9
read(A)
write(A)

read(A)

commit
read(B)
abort

The schedule is not recoverable because the commit for T9
cannot be undone, but it should be because T8 was never
committed!

T8 aborts, but T9 is already
committed based on update of T8!

Page 45

COSC 404 - Dr. Ramon Lawrence

Recoverable Schedule Question
Question: Is this schedule recoverable?

T8 T9
read(A)
write(A)

read(A)

commit
read(B)
commit

A) yes B) no

Page 46

COSC 404 - Dr. Ramon Lawrence

Cascading rollback occurs when a single transaction failure
leads to a series of transaction rollbacks.

Consider the following schedule where no transactions have
yet committed (so the schedule is recoverable):

T10 T11 T12
read(A)
read(B)
write(A)

read(A)
write(A)

read(A)

abort

If T10 fails, T11 and T12 must also be rolled back.
Can lead to the undoing of a significant amount of work!
Note that T10 does not have to abort for the schedule to have cascading

rollback. T11 and T12 will be FORCED to abort if T10 aborts. However,
even if T10 commits, the schedule is not cascade-free because
it has the potential for cascading aborts (but they did not occur).

Cascading Rollback

Page 47

COSC 404 - Dr. Ramon Lawrence

Cascadeless Schedules
In a cascadeless schedule, cascading rollbacks cannot occur.
For each pair of transactions Ti and Tj such that Tj reads a data

item previously written by Ti, the commit of Ti appears before
the read operation of Tj.

That is, transactions only read committed values.

Every cascadeless schedule is also recoverable.

A recoverable schedule never rolls back committed
transactions, but may cascade rollback uncommitted
transactions.

Page 48

COSC 404 - Dr. Ramon Lawrence

Cascade-Free Schedule Question
Question: Is this schedule cascade-free?

T8 T9
read(A)
write(A)

read(B)
read(B)
commit

commit

A) yes B) no

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Strict Schedules
In a strict schedule, a transaction can neither read nor write a
data item until the last transaction that wrote the data item
commits (or aborts).
Strict schedules simplify recovery procedures because undoing

an item write of an aborted transaction just involves restoring
the before image (old value) of the item.

A strict schedule is always recoverable and cascadeless, but
not vice versa.

Example: T10 T11
read(A)
read(B)
write(A)

write(A)
commit

abort

Page 50

COSC 404 - Dr. Ramon Lawrence

T1: r1(A); w1(A); r1(B); w1(B); c1

T2: r2(A); w2(A); r2(B); w2(B); c2

T3: r3(B); r3(A); w3(B); c3

Given the three transactions T1, T2, T3, come up with the
following schedules:
a) A serial schedule

b) A conflict serializable schedule (non-serial)

c) A non-conflict serializable schedule

d) A non-recoverable, non-serial schedule

e) A cascade-free, non-serial schedule

f) A strict, non-serial schedule

Schedule Questions

Page 51

COSC 404 - Dr. Ramon Lawrence

View Serializability
Let S and S´ be two schedules with the same transactions. S
and S´ are view equivalent if these three conditions are met:
1. For each data item Q, if transaction Ti reads the initial value of

Q in schedule S, then transaction Ti must also read the initial
value of Q in schedule S´.

2. For each data item Q, if transaction Ti executes read(Q) in
schedule S, and that value was produced by transaction Tj,
then transaction Ti must also read the value of Q that was
produced by transaction Tj in schedule S´.

3. For each data item Q, the transaction (if any) that performs the
final write(Q) operation in schedule S must perform the final
write(Q) operation in schedule S´.

Conditions 1 and 2 ensure each transaction reads the same
values, and condition 3 ensures the same final result.

Page 52

COSC 404 - Dr. Ramon Lawrence

A schedule S is view serializable if it is view equivalent to a
serial schedule.
Every conflict serializable schedule is also view serializable.
Every view serializable schedule which is not conflict serializable has

blind writes. (A write without a read.)

This schedule is view serializable but not conflict serializable:

T3 T4 T8
read(Q)

write(Q)
write(Q)

write (Q)

Schedule is equivalent to serial schedule: T3  T4  T8

View Serializability (2)

Page 53

COSC 404 - Dr. Ramon Lawrence

Test for View Serializability
The precedence graph test for conflict serializability can be
modified to test for view serializability:
Construct a labeled precedence graph.

Look for an acyclic graph that is derived from the labeled
precedence graph by choosing one edge from every pair of
edges with the same non-zero label. (2n such graphs)

Schedule is view serializable if and only if such an acyclic graph
can be found.

The problem of looking for such an acyclic graph falls in the
class of NP-complete problems.
Thus existence of an efficient algorithm is unlikely.

However practical algorithms that just check some sufficient
conditions for view serializability can still be used.

Page 54

COSC 404 - Dr. Ramon Lawrence

The schedule below produces the same outcome as the serial
schedule < T1, T5 >, yet is not conflict or view equivalent.

T1 T5
read(A)

A := A – 50
write(A)

read(B)
B := B – 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

Determining such equivalence requires analysis of operations
other than read and write.

Other Notions of Serializability

Why DO these
schedules result in the
same answer?

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Concurrency Control and
Serializability Tests

Testing a schedule for serializability after it has executed is a
little too late!

The goal is to develop concurrency control protocols that will
ensure serializability.
They do not use the precedence graph as it is being created.

Instead a protocol will impose a discipline that avoids non-
serializable schedules.

Tests for serializability help understand why a concurrency
control protocol is correct.

Page 56

COSC 404 - Dr. Ramon Lawrence

Transaction Management
Summary

A transaction is a unit of program execution that accesses and
may update data values and must be executed atomically.

Transactions should demonstrate the ACID properties:
atomicity, consistency, isolation, and durability

A schedule is the sequence of operations (possibly interleaved)
from multiple concurrent transactions. A schedule is serializable
if it can be proven equivalent to a serial schedule.
Two types: conflict serializability and view serializability

Tests for conflict serializability involves defining a precedence
graph and checking for cycles.

A schedule may also be recoverable, cascade-free, or strict.

Serializability tests are re-active, concurrency control protocols
are pro-active. (prevent non-serializability)

Page 57

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
List and explain the ACID properties of transactions.

Test for conflict serializability using a precedence graph.

Major Theme:
Transactions are used to guarantee a set of operations are

performed in an atomic manner. The DBMS must ensure
interleaving of concurrent transactions is (conflict) serializable
using a concurrency control method.

Page 58

COSC 404 - Dr. Ramon Lawrence

Objectives
Define: transaction, atomic, consistent, constraint

Explain the two challenges in preserving consistency.

List and explain the ACID properties of transactions.

Write a transaction using read/write operations.

List the transactions states and draw the state diagram.

Define schedules and serial schedules.

List three problems that motivate concurrency control.

Define conflict serializability and conflicting operations.

Test for conflict serializability using a precedence graph.

Define, recognize, and create examples of recoverable,
cascade-free, and strict schedules.

Draw the Venn diagram for schedules.

Page 59

COSC 404 - Dr. Ramon Lawrence

Objectives (2)
Define view serializability and the 3 rules for view equivalent

schedules.

Define and give an example of a blind write.

Recognize and create view serializable schedules.

