
1

COSC 404
Database System Implementation

Concurrency Control

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Concurrency Control Overview
Concurrency control (CC) is a mechanism for guaranteeing
that concurrent transactions in the database exhibit the ACID
properties. Specifically, the isolation property.

There are different concurrency control protocols:
lock-based protocols

timestamp protocols

validation protocols

snapshot isolation

Page 3

COSC 404 - Dr. Ramon Lawrence

Lock-Based Protocols
A lock is a mechanism to control concurrent access to data.
An item can only be accessed through the lock.

Data items can be locked in two modes:
exclusive (X) mode: Data item can be both read as well as

written. X-lock is requested using lock-X instruction.

shared (S) mode: Data item can only be read. S-lock is
requested using lock-S instruction.

Lock requests are made to the concurrency control manager. A
transaction can only proceed after the request is granted and
must follow the restrictions of the lock.

Page 4

COSC 404 - Dr. Ramon Lawrence

Lock-Based Protocols (2)
Lock-compatibility matrix:

A transaction may be granted a lock on an item if the requested
lock is compatible with locks already held on the item by other
transactions.
Any # of transactions can hold shared locks on an item.

If any transaction holds an exclusive lock on the item, no other
transaction may hold any lock on the item.

If a lock cannot be granted, the requesting transaction is made
to wait until all incompatible locks held by other transactions
are released. The lock is then granted.

S X

falsetrueS

X false false

Page 5

COSC 404 - Dr. Ramon Lawrence

Lock-Based Protocol Example
Example of a transaction performing locking:

lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

Simple locking is not sufficient to guarantee serializability.
 If A and B get updated in-between the read of A and B, the

displayed sum would be wrong.

A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks. Locking protocols restrict
the set of possible schedules.

Another transaction updates B here.

Page 6

COSC 404 - Dr. Ramon Lawrence

Pitfalls of Lock-Based Protocols
Consider the partial schedule:

Neither T3 nor T4 can make progress as executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X(A) causes T3 to wait for T4 to release its lock on A.

Such a situation is called a deadlock. To handle a deadlock
one of T3 or T4 must be rolled back and its locks released.

T3 T4

lock-X(B)
read(B)
B:- B-50
write(B)

lock-S(A)
read(A)
lock-S(B)

lock-X(A)

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Pitfalls of Lock-Based Protocols (2)
The potential for deadlock exists in most locking protocols.

Starvation is also possible if the concurrency control manager
is badly designed. Examples:
A transaction may be waiting for an exclusive lock on an item,

while a sequence of other transactions request and are granted
a shared lock on the same item.

The same transaction is repeatedly rolled back due to
deadlocks.

The concurrency control manager can be designed to prevent
starvation.
For example, do not grant a shared lock if the item is

exclusively locked or a transaction is waiting for a lock-X.

Page 8

COSC 404 - Dr. Ramon Lawrence

Locking Question
Question: Which of the following statements are true?

A) A shared lock allows a transaction to write a data item.

B) More than one transaction can have a shared lock on an
item.

C) More than one transaction can have an exclusive lock on an
item.

D) Deadlock can be avoided by releasing locks as early as
possible.

E) More than one statement is true.

Page 9

COSC 404 - Dr. Ramon Lawrence

The Two-Phase Locking Protocol
Two-Phase Locking (2PL) ensures conflict-serializable
schedules by requiring all locks be acquired before first unlock.

Phase 1: Growing Phase
transaction may obtain locks

transaction may not release locks

Phase 2: Shrinking Phase
transaction may release locks

transaction may not obtain locks

The protocol ensures serializability. It can be proved that the
transactions can be serialized in the order of their lock points
(i.e. the point where a transaction acquired its final lock). Page 10

COSC 404 - Dr. Ramon Lawrence

The Two-Phase Locking Protocol (2)
2PL does not ensure freedom from deadlocks.

Cascading roll-back is also possible under two-phase locking.

Conservative 2PL is deadlock free as all locks must be pre-
declared and allocated at transaction start time.

Strict 2PL prevents cascading rollback as a transaction holds
all its exclusive locks until it commits/aborts.

Thus, uncommitted data is locked and cannot be accessed.

Rigorous 2PL is even stricter as all locks are held till
commit/abort. (also cascade free)

Transactions can be serialized in the order that they commit.

Database systems that use locking use strict or rigorous 2PL.

Page 11

COSC 404 - Dr. Ramon Lawrence

Lock Conversions
Increased concurrency is possible by allowing lock conversions.
Upgrade - convert shared lock to exclusive lock

Downgrade - convert exclusive lock to shared lock

For two-phase locking with lock conversions:
Upgrades and lock acquires are allowed in growing phase.

Downgrades and lock releases are in the shrinking phase.

Page 12

COSC 404 - Dr. Ramon Lawrence

Automatic Acquisition of Locks

A simple automated algorithm can place lock requests for a
transaction Ti issuing the standard read/write instructions:

The operation read(D) is processed as:

if Ti has a lock on D then read(D) otherwise

request a lock-S on D (may be necessary to wait for a lock-X)

when lock-S request is granted, then read(D)

The operation write(D) is processed as:
if Ti has a lock-X on D then write(D) otherwise

if Ti has a lock-S on D then upgrade lock on D to lock-X
 may have to wait for upgrade

otherwise request a new lock-X

finally write(D) when receive upgrade or new lock

All locks are released after commit or abort.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Example on Auto Lock Insertion
Abbreviations:
A transaction Ti requesting a lock-S on D is given as: sli (D).

A transaction Ti requesting a lock-X on D is given as: xli (D).

A transaction Ti unlocking a data item D is given as: uli(D).

Given transaction T1, insert lock operations according to 2PL:
T1: r1(A); r1(C); w1(B); w1(C);

Basic 2PL:
sl1(A); r1(A); sl1(C); r1(C); xl1(B); ul1(A); w1(B); ul1(B); xl1(C); w1(C);

ul1(C); c1;

locks may be released anytime after
this operation when not needed

Page 14

COSC 404 - Dr. Ramon Lawrence

Example on Auto Lock Insertion (2)
Conservative 2PL:
atomic(sl1(A), xl1(C), xl1(B))

r1(A); r1(C); w1(B); w1(C); c1;ul1(A); ul1(B); ul1(C);

Strict 2PL:
sl1(A); r1(A); xl1(C); r1(C); xl1(B); w1(B); xl1(C); ul1(A); w1(C); c1; ul1(B);

ul1(C);

Rigorous 2PL:
sl1(A); r1(A); xl1(C); r1(C); xl1(B); w1(B);); xl1(C); w1(C); c1; ul1(A);

ul1(B); ul1(C);

locks may be released after they are
no longer needed

read locks may be released before commit
(after last lock operation)

all locks released after commit

Page 15

COSC 404 - Dr. Ramon Lawrence

2PL Question
Question: How many of the following statements are true?
i) Conservative 2PL is deadlock-free.

ii) Rigorous 2PL releases only write locks after commit.

iii) Lock upgrades are allowed during the shrinking phase of 2PL.

iv) Strict 2PL produces strict schedules.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 16

COSC 404 - Dr. Ramon Lawrence

Questions on 2PL
1) Given the following transactions, insert lock operations
according to 2PL:

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

2) Write one non-serial schedule that obeys to 2PL, or argue
why one is not possible.

3) Repeat #1 and #2 for these transactions:

T1: r1(A); w1(A); r1(B); w1(B); c1

T2: r2(A); w2(A); r2(B); w2(B); c2

T3: r3(C); r3(A); w3(C); c3

Page 17

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity
To this point, we have been locking individual data items. It is
beneficial to allow locking of various size data items.
Define a hierarchy of data granularities, where the small

granularities are nested within larger ones.

Can be represented graphically as a tree.

When a transaction locks a node in the tree explicitly, it
implicitly locks all the node's descendents in the same mode.

Granularity of locking (level in tree where locking is done):
fine granularity (lower in tree): high concurrency, high locking

overhead (e.g. record locking, attribute locking)

coarse granularity (higher in tree): low locking overhead, low
concurrency (e.g. table locking, database locking)

Page 18

COSC 404 - Dr. Ramon Lawrence

The highest level in the hierarchy is the entire database.

The levels below are relation, tuple and field in that order.

Example of Granularity Hierarchy

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Intention Lock Modes
In addition to S and X lock modes, there are three additional
lock modes with multiple granularity:
intention-shared (IS): indicates explicit locking at a lower level

of the tree but only with shared locks.

intention-exclusive (IX): indicates explicit locking at a lower
level with exclusive or shared locks

shared and intention-exclusive (SIX): the subtree rooted by
that node is locked explicitly in shared mode and explicit locking
is being done at a lower level with exclusive-mode locks.

Intention locks allow a higher level node to be locked in S or X
mode without having to check all descendent nodes.

Page 20

COSC 404 - Dr. Ramon Lawrence

Compatibility Matrix with
Intention Lock Modes

The compatibility matrix for all lock modes is:

IS IX S SIX X

IS

IX

S

SIX

X









  







   

 

 









Page 21

COSC 404 - Dr. Ramon Lawrence

X

SIX

S IX

IS

Strongest

Weakest

Multi Granularity Lock "Strength"

Page 22

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking
Transaction Ti can lock a node Q using the rules:
The lock compatibility matrix must be observed.

The root of the tree must be locked first (in any mode).

A node Q can be locked by Ti in S or IS mode only if the parent
of Q is currently locked by Ti in either IX or IS mode.

A node Q can be locked by Ti in X, SIX, or IX mode only if the
parent of Q is currently locked by Ti in either IX or SIX mode.

Ti can lock a node only if it has not previously unlocked any
node (that is, this is a variant of two-phase locking).

Ti can unlock a node Q only if none of the children of Q are
currently locked by Ti.

Locks are acquired in root-to-leaf order, and released in
leaf-to-root order.

Page 23

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example
T1 wants to lock R1.t2.f1 in X-mode.

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(IX)

f1

T1(X)

Page 24

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (2)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(IX)

f1

T1(X)

T2(IX)

T2(IX)

T2(IX)

f2

T2(X)

Yes, it works!

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (3)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(X)

T2(IX)

T2(IX)
T2(IX)
conflicts

No, conflict at t2! Page 26

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (4)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IS)

R1

T1(IS)

t1

T1(S)

T2(IX)

T2(IX)

T2(IX)

t2

f2

T2(X)

Yes, it works!

Page 27

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (5)
T2 wants to lock R1.t2.f2 in S-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(SIX)

T2(IS)

T2(IS)

T2(IS)

f2

T2(S)

t2

T1(IX)

f1

T1(X)

Yes, it works!
Page 28

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (6)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(SIX)

T2(IX)

T2(IX)
conflicts

t2

T1(IX)

f1

T1(X)

No, conflict at R1!

Page 29

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Question
Question: How many of the following statements are true?
i) The protocol always must lock the root node first.

ii) If a child node is locked, its parent node must also be locked.

iii) The protocol allows locking several tables at the same time.

iv) The protocol is deadlock free.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 30

COSC 404 - Dr. Ramon Lawrence

Deadlock Handling
A system is deadlocked if there is a set of transactions such
that every transaction in the set is waiting for another
transaction in the set.

Two mechanisms for deadlock handling:
deadlock prevention - do not allow system to enter deadlock

state

deadlock detection - detect deadlock condition and abort
transactions to remove deadlock state

Cost of deadlock handling includes:
overhead of scheme itself

potential losses in transaction processing due to rollbacks

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Deadlock Prevention
Deadlock prevention protocols ensure that the system will
never enter into a deadlock state.

Some strategies:
Require that each transaction locks all its data items before it

begins execution (predeclare locks, e.g. conservative 2PL).

Impose a partial ordering on data items and require that a
transaction lock data items only in the order specified.

Wound-wait and wait-die strategies use timestamps to
determine transaction age and determine if a transaction should
wait or be rolled back on a lock conflict.

Page 32

COSC 404 - Dr. Ramon Lawrence

Wound-Wait and Wait-Die Strategies
Wait-Die scheme — non-preemptive
Older transaction may wait for younger one to release data

item. Younger transactions never wait for older ones; they are
rolled back instead.

A transaction may die several times before acquiring needed
data item.

Wound-Wait scheme — preemptive
Older transaction wounds (forces rollback) of younger

transaction instead of waiting for it. Younger transactions may
wait for older ones.

May cause fewer rollbacks than wait-die scheme.

Note: A rolled back transaction is restarted with its original
timestamp. Older transactions have precedence over newer
ones, and starvation is avoided.

Page 33

COSC 404 - Dr. Ramon Lawrence

Timeout-Based Schemes
In a Timeout-Based Schemes:
A transaction waits for a lock only for a specified amount of

time. After that, the transaction times out and is rolled back.

Thus deadlocks are not possible.

Simple to implement, but starvation is possible.

Difficult to determine good value of the timeout interval.
Too short - false deadlocks (unnecessary rollbacks)

Too long - wasted time while system is in deadlock

Page 34

COSC 404 - Dr. Ramon Lawrence

Deadlock Detection & Recovery
If deadlocks are not prevented, then a detection and recovery
procedure is needed to recover when the system enters the
deadlock state.

An algorithm is run periodically to check for deadlock. If the
system is in deadlock, then transactions are aborted to resolve
the deadlock.

Deadlock detection requires the system:
Maintain information about currently allocated locks.

Provide an algorithm to detect a deadlock state.

Recover from deadlock by aborting transactions efficiently.

Page 35

COSC 404 - Dr. Ramon Lawrence

Wait-for Graphs
Deadlocks can be detected using a wait-for graph, G = (V,E):
V is a set of vertices (all the transactions in the system).

E is a set of edges; each element is an ordered pair Ti Tj.

If Ti  Tj is in E, then there is a directed edge from Ti to Tj,
implying that Ti is waiting for Tj to release a data item.

When Ti requests a data item currently being held by Tj, then
the edge Ti  Tj is inserted into the graph.
This edge is removed only when Tj is no longer holding a data

item needed by Ti.

The system is in a deadlock state if and only if the wait-for
graph has a cycle. Must invoke a deadlock-detection algorithm
periodically to look for cycles.

Page 36

COSC 404 - Dr. Ramon Lawrence

Wait-for graph with no cycle Wait-for graph with a cycle

Wait-for Graph Examples

7

Page 37

COSC 404 - Dr. Ramon Lawrence

Deadlock Recovery
When a deadlock is detected three factors to consider:
Victim selection - Some transaction will have to rolled back

(made a victim) to break deadlock.
Select the victim transaction that will incur minimum cost (computation

time, data items used, etc.).

Rollback - determine how far to roll back transaction
Total rollback: Abort the transaction and then restart it.

More effective to roll back transaction only as far as necessary to break
deadlock. (requires system store additional information)

Starvation happens if same transaction is always chosen as
victim.
Include the number of rollbacks in the cost factor to avoid starvation.

Page 38

COSC 404 - Dr. Ramon Lawrence

Deadlock Question
Question: How many of the following statements are true?
i) A deadlock prevention protocol ensures deadlock never

occurs.

ii) In Wound-Wait, an older transaction waits on a younger one.

iii) A wait-for graph has undirected edges between transactions.

iv) A wait-for graph with 5 nodes but only 3 in a cycle is not in a
deadlock state.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 39

COSC 404 - Dr. Ramon Lawrence

Questions on Deadlocks
1) Assume a read-lock is requested before each read, and a
write lock before each write. All unlocks occur after the last
operation of a transaction. Explain what operations are denied
during each schedule, draw the wait-for graph, and pick a
transaction to abort if a deadlock does occur.

a) r1(A); r2(B); w1(C); r3(D); r4(E); w3(B); w2(C); w4(A); w1(D);

b) r1(A); r2(B); r3(C); w1(B); w2(C); w3(D);

c) r1(A); r2(B); r3(C); w1(B); w2(C); w3(A);

Page 40

COSC 404 - Dr. Ramon Lawrence

Timestamp-Based Protocol

A timestamp protocol serializes transactions in the order they
are assigned timestamps by the system.

Each transaction Ti is issued a timestamp TS(Ti) when it enters
the system.

If an old transaction Ti has timestamp TS(Ti), a new transaction
Tj has timestamp TS(Tj) where TS(Ti) < TS(Tj).

The timestamp can be assigned using the system clock or some
logical counter that is incremented for every timestamp.

Timestamp protocols do not use locks, so deadlock cannot
occur!

Page 41

COSC 404 - Dr. Ramon Lawrence

Timestamp-Based Protocol
Read and Write Timestamps

To ensure serializability, the protocol maintains for each data Q
two timestamp values:

W-timestamp(Q) is the largest timestamp of any transaction
that executed write(Q) successfully.

R-timestamp(Q) is the largest timestamp of any transaction
that executed read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting
read and write operations are executed in timestamp order.

Page 42

COSC 404 - Dr. Ramon Lawrence

Timestamp-Based Protocol Rules
Suppose a transaction Ti issues a read(Q):
If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.
Hence, the read operation is rejected, and Ti is rolled back.

If TS(Ti) W-timestamp(Q), then the read operation is executed.
The R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

Suppose that transaction Ti issues a write(Q):
If TS(Ti) R-timestamp(Q) AND TS(Ti) W-timestamp(Q), then

the write operation is executed.

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is
producing was previously read by newer transaction.
Hence, the write operation is rejected, and Ti is rolled back.

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q. Ti is rolled back.

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Timestamp Example
A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5:

T1 T2 T3 T4 T5

read(Y)
read(X)

read(Y)
write(Y)

read(Z)
write(X)
abort

read(X)
write(Z)
abort

write(Y)
write(Z)

Page 44

COSC 404 - Dr. Ramon Lawrence

Correctness of Timestamp-Ordering Protocol

The timestamp-ordering protocol guarantees serializability
since all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph.

Timestamp protocol ensures freedom from deadlock as no
transaction ever waits.

Protocol is not recoverable or cascade-free.

Can achieve both properties if perform all writes atomically at
end of the transaction.

transaction
with smaller
timestamp

transaction
with larger
timestamp

Page 45

COSC 404 - Dr. Ramon Lawrence

Thomas’ Write Rule
Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances:

When Ti attempts to write data item Q, if TS(Ti) < W-
timestamp(Q), then Ti is attempting to write an obsolete value of
{Q}. Hence, rather than rolling back Ti as the timestamp
ordering protocol would have done, this write operation can be
ignored. Otherwise protocol is unchanged.

Thomas' Write Rule allows greater potential concurrency.
Unlike previous protocols, it allows some view-serializable
schedules that are not conflict-serializable.

Page 46

COSC 404 - Dr. Ramon Lawrence

Timestamp Protocol Question
Question: How many of the following statements are true?
i) Deadlock is not possible with timestamp protocols.

ii) A transaction that arrives later to the system always has a
smaller timestamp.

iii) The precedence graph for the timestamp algorithm has edges
from smaller timestamp transactions to larger ones.

iv) A write is only performed if transaction has a timestamp >=
the read timestamp for the data item.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 47

COSC 404 - Dr. Ramon Lawrence

Questions on Timestamping
1) Indicate what happens during each of these schedules
where concurrency control is performed using timestamps:

a) st1; st2; r1(A); r2(B); w2(A); w1(B);

b) st1; r1(A); st2; w2(B); r2(A); w1(B);

c) st1; st2; st3; r1(A); r2(B); w1(C); r3(B); r3(C); w2(B); w3(A);

d) st1; st3; st2; r1(A); r2(B); w1(C); r3(B); r3(C); w2(B); w3(A);

Page 48

COSC 404 - Dr. Ramon Lawrence

Validation Protocols
Validation or optimistic concurrency control protocols
assume that the number of conflicts is low and verify correctness
after a transaction is completed. Three phases:
1) Read phase – Transaction reads data items and performs

operations. Writes are stored in local transaction memory.

2) Validation phase – Transaction checks if can proceed to
write phase without violating serializability.

3) Write phase – All writes are copied to the database.

The validation test uses timestamps to guarantee that for two
transactions Ti and Tj with TS(Ti) < TS(Tj) either:
1) Ti finished before Tj started OR

2) Set of data items written by Ti does not intersect with items
read by Tj and Ti completes writes before Tj validates.

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Multiversion Schemes
Multiversion schemes keep old versions of data to increase
concurrency. This is especially useful for read transactions.

Each successful write creates a new version of the data item.
Use timestamps or transaction ids to label versions.

When a read operation is issued, select an appropriate version
of the data item based on the timestamp.

Reads never have to wait as an appropriate version is returned
immediately.

Page 50

COSC 404 - Dr. Ramon Lawrence

Multiversion Timestamp Ordering
Each data item Q has a sequence of versions <Q1, Q2,, Qm>.
Each version Qk contains three fields:
Content - the value of version Qk

W-timestamp(Qk) - timestamp of the transaction that created
(wrote) version Qk

R-timestamp(Qk) - largest timestamp of a transaction that
successfully read version Qk

When a transaction Ti creates a new version Qk of Q, Qk's W-
timestamp and R-timestamp are initialized to TS(Ti).

R-timestamp of Qk is updated whenever a transaction Tj reads
Qk, and TS(Tj) > R-timestamp(Qk).

Page 51

COSC 404 - Dr. Ramon Lawrence

Multiversion Timestamp Scheme
The following scheme ensures serializability:

Let Qk denote the version of Q whose write timestamp is the
largest write timestamp less than or equal to TS(Ti).

If transaction Ti issues a read(Q) then:

 The value returned is the content of version Qk.

If transaction Ti issues a write(Q):

If TS(Ti) < R-timestamp(Qk), then Ti is rolled back.

If TS(Ti) = W-timestamp(Qk), Qk is overwritten.

Otherwise a new version of Q is created.

Page 52

COSC 404 - Dr. Ramon Lawrence

Multiversion Timestamp Scheme (2)
Reads always succeed; writes may be rejected if:
Some other transaction Tj that (in the serialization order defined

by the timestamp values) should read Ti's write, has already
read a version created by a transaction older than Ti.

Challenges:
Must have an efficient way of handling versions (and discarding

when no longer needed).

Conflicts resolved through rollbacks rather than waiting so user
application must be prepared to resubmit failed transactions.
Only update transactions can be rolled back.

Page 53

COSC 404 - Dr. Ramon Lawrence

Multiversion 2PL
Multiversion 2PL requires:
1) An integer counter used for timestamps for items and

transactions.

2) Read-only transactions retrieve counter at start of transaction
and use it to determine version to read. No locking used.

3) Update transactions perform rigorous 2PL. At commit,
transaction increments timestamp counter and sets timestamp
on every item it created.

Multiversion 2PL allows read transactions to never wait on locks
and produces schedules that are recoverable and cascadeless.

Page 54

COSC 404 - Dr. Ramon Lawrence

Snapshot Isolation
Snapshot isolation is a widely-used protocol that gives each
transaction its own "snapshot" of the database to execute on.

A snapshot consists of committed data values in the database
before the transaction starts.

Read-only transactions never wait and are never aborted.

Update transactions keep updates private until commit when
they are written to the database atomically. A validation is
performed before writing the updates are allowed.

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Snapshot Isolation
Validation Test

Two ways to validate:

First committer wins:
Transaction T enters prepared to commit state and checks:
If any concurrent transaction has updated any item T wants to update.

If yes, T is aborted. If no, T commits and updates written to database.

First update wins:
If transaction T wants to update, it must get write lock on item.

When lock is acquired, check if item has been updated by a
concurrent transaction. If so, abort, otherwise proceed.

Page 56

COSC 404 - Dr. Ramon Lawrence

Snapshot Isolation
Serializability Issues

Despite its advantages and being widely implemented (Oracle,
PostgreSQL, SQL Server), snapshot isolation does not ensure
serializability.

There are cases where particular transaction schedules are not
serializable.

However, these issues can be often ignored or avoided,
especially since primary and foreign key constraints are
validated after snapshot validation and will often detect conflicts.

Page 57

COSC 404 - Dr. Ramon Lawrence

Multiversion and Snapshot Isolation
Question

Question: How many of the following statements are true?
i) Reads always succeed with a multiversion scheme.

ii) Writes always succeed and create a new version each write.

iii) Snapshot isolation guarantees serializability.

iv) In a multiversion scheme, a read for a transaction may occur
on a data value that is not the most recent.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 58

COSC 404 - Dr. Ramon Lawrence

Insert and Delete Operations
In addition to read/write operations, the system must handle
delete and insert operations.

Deletion with two-phase locking:
May only be performed if the transaction deleting the tuple has

an exclusive lock on the tuple to be deleted.

Insertion with two-phase locking:
A transaction that inserts a new tuple into the database is given

an X-mode lock on the tuple.

Page 59

COSC 404 - Dr. Ramon Lawrence

The Phantom Phenomenon
Inserts/deletes can lead to the phantom phenomenon:
A transaction that scans a relation (e.g., find all students) and a

transaction that inserts a tuple in the relation (e.g., inserts a
new student) may conflict in spite of not accessing any tuple in
common.

If only tuple locks are used, non-serializable schedules can
result: the scan transaction may not see the new tuple, yet may
be serialized before the insert transaction.

Transactions conflict over a phantom tuple.

The transaction scanning the relation reads information that
indicates what tuples the relation contains. A transaction
inserting a tuple updates the same info.

This information should be locked.

Page 60

COSC 404 - Dr. Ramon Lawrence

The Phantom Phenomenon (2)
Can prevent problem by:
Accepting the issue (read committed isolation)

Locking the entire relation (multi-granularity locking)

Using index-locking or predicate-locking to guarantee that
conflicts within the relation are detected.

Having a special lock associated with the entire file. Read
transactions that scan the whole relation must get a read lock
on it and update transactions must get a write lock.

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Transaction Definition in SQL
In SQL, a transaction begins implicitly.

A transaction in SQL ends by:
Commit accepts updates of current transaction.

Rollback aborts current transaction and discards its updates.
Failures may also cause a transaction to be aborted.

An isolation level reflects how a transaction perceives the
results of other transactions. It applies only to your perspective
of the database, not other transactions/users. Lowering
isolation level improves performance but may potentially
sacrifice consistency.

Page 62

COSC 404 - Dr. Ramon Lawrence

Example Transactions
Transaction to deposit $50 into a bank account:

Transaction to calculate totals for all accounts (twice):

Transaction to add a new account:

BEGIN TRANSACTION;
UPDATE Account WHERE num = 'S1' SET balance=balance+50;

COMMIT T1;

BEGIN TRANSACTION;
SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;

COMMIT T2;

BEGIN TRANSACTION;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);

COMMIT T3;

Page 63

COSC 404 - Dr. Ramon Lawrence

Levels of Consistency in SQL-92
The isolation level can be specified by:

SET TRANSACTION ISOLATION LEVEL = X where X is

Serializable - transactions behave like executed one at a time.

Repeatable read - repeated reads must return same data. Does
not necessarily read newly inserted records.

Read committed - only committed values can be read, but
successive reads may return different values.

Read uncommitted - even uncommitted records may be read.
Reading an uncommitted value is called a dirty read.

Page 64

COSC 404 - Dr. Ramon Lawrence

Scheduling of Transactions
Each transaction in a database is a separate executing program.
A transaction may be its own program or a thread of execution.

The operating system schedules the execution of programs
outside of the control of the DBMS.
Thus, transactions may be executed in any order (as long as the

order of operations within a transaction are the same). This
interleaving is what produces different schedules.

The DBMS uses its concurrency control protocol to restrict the
schedules to those that respect the consistency specified by the
user for the transaction isolation level.
All transactions must write lock any data item updated and the

relation lock if inserting.

Isolation level only affects read locks.

Page 65

COSC 404 - Dr. Ramon Lawrence

Scheduling Question
Question: TRUE or FALSE: The database has complete control
over the scheduling of transactions.

A) True

B) False

Page 66

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Serializable

A serializable schedule requires that regardless of the
interleaving of the operations, the final result is the same as
some serial ordering of the transactions.
Read and write locks are held to commit. Also have a relation-

level lock.

For three transactions, there are 3! = 6 serial schedules.

For these examples, assume that the total amount of money in
all accounts is $5000 before the transactions begin.

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Serializable (2)

Example schedule for T1, T2, T3:

After execution, total1 = $5050 and total2 = $5050.
The results for all six serial schedules are:
T1, T2, T3 – total1 = $5050 ; total2 = $5050

T1, T3, T2 – total1 = $5150 ; total2 = $5150

T2, T1, T3 – total1 = $5000 ; total2 = $5000

T2, T3, T1 – total1 = $5000 ; total2 = $5000
T3, T1, T2 – total1 = $5150 ; total2 = $5150

T3, T2, T1 – total1 = $5100 ; total2 = $5100

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT T3;

Page 68

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Repeatable read

With repeatable read, a transaction is guaranteed to get the
same data back on multiple reads but may see phantom
records inserted in between reads.
Read and write locks are held to commit.

Example schedule:

After execution, total1 = $5050 and total2 = $5150 as the
second read sees the newly inserted tuple.

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
SELECT SUM(balance) as total1 FROM Account;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT T3;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;

Page 69

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Read Committed

With read committed, each read will get the most recently
committed values even if different than an earlier read.
Read locks are released after every statement. Write locks

released at commit.

Example schedule:

After execution, total1 = $5000 and total2 = $5150 as the
second read sees the newly inserted tuple and T1’s update.

SELECT SUM(balance) as total1 FROM Account;
UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT T3;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;

Page 70

COSC 404 - Dr. Ramon Lawrence

Read uncommitted allows a transaction to read dirty data that
has not been (and may never be) committed.
Transaction acquires no read locks.

Example schedule:

After execution, total1 = $5050 and total2 = $5150 as T2’s sees
even uncommitted data. Note that both T1 and T3 abort so T2
sees incorrect data. It is very dangerous to use read
uncommitted if the transaction updates the database!

Isolation Example
Read Uncommitted

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
SELECT SUM(balance) as total1 FROM Account;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
ABORT T3;
ABORT T1;

Page 71

COSC 404 - Dr. Ramon Lawrence

Summary of Isolation Levels
Isolation Level Problems Lock Usage Speed Comments

Serializable None Read locks held
to commit ; read
lock on relation

Slowest Only level that guarantees
correctness.

Repeatable read Phantom
tuples

Read locks held
to commit

Medium Useful for modify
transactions.

Read committed Phantom
tuples, values
may change

Read locks
released after
each statement

Fast Useful for transactions
where operations are
separable but updates are
all or none.

Read uncommitted Phantoms,
values may
change, dirty
reads

No read locks Fastest Useful for read-only
transactions that tolerate
inaccurate results

Page 72

COSC 404 - Dr. Ramon Lawrence

Isolation Levels Question
Question: How many of the following statements are true?
i) Serializability guarantees that there are no phantom tuples.

ii) Read committed may be affected by phantom tuples.

iii) In read committed, two reads at separate times may retrieve
different values.

iv) Read uncommitted is the fastest isolation level.

A) 0

B) 1

C) 2

D) 3

E) 4

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Transaction Practice Question
Given these transactions and table Bid(itemID, price)
that initially contains the two tuples: (i1,10) and (i2,20):

Assume that T1 executes with isolation level serializable and
both transactions successfully commit.
1) If T2 executes with isolation level serializable, what are all

the possible pairs of values for p1 and p2 returned by T2?

2) If T2 executes with isolation level read committed, what are
all the possible pairs of values for p1 and p2 for T2?

T1: BEGIN TRANSACTION;
S1: UPDATE Bid SET price = price + 5;
S2: INSERT INTO Bid VALUES (i3,30);
COMMIT;

T2: BEGIN TRANSACTION;
S1: SELECT SUM(price) AS p1 FROM Bid;
S2: SELECT MAX(price) AS p2 FROM Bid;
COMMIT;

Page 74

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in PostgreSQL
PostgreSQL uses snapshot isolation for DML and 2PL for DDL.
Snapshot isolation implementation is referred to as multi-version

concurrency control (MVCC).
Uses first updater wins policy. Uses x-locks on written rows.

Each transaction has id (logical counter). Each tuple has transaction id
that created it. Keeps track of snapshot info for each transaction.

Tradeoff: Reads never wait but more space used that must be handled.

Uses deadlock detection with timeouts (default 1 sec.).

Isolation levels supported:
read committed (default), serializable
For read committed, timestamp is at statement level. For serializable,

timestamp is transaction's first timestamp.

A transaction will wait for a lock on a row currently being updated. If
update committed by another transaction, waiting transaction issues error
"could not serialize access due to concurrent update". Only possible for
update/deletes.

Page 75

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in MySQL
MySQL with the InnoDB storage engine uses snapshot
isolation (multi-version concurrency control) for reads and 2PL
for updates.

Supports all 4 isolation levels with different locks acquired for
different levels. Default is repeatable read.

Page 76

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in
Microsoft SQL Server

Microsoft SQL Server uses 2PL and optimistic concurrency
control.

Supports all four isolation levels plus two snapshot isolation
levels.

Uses multiple granularity locking and automatically determines
correct sizes (table, extent, page, rows).

Older snapshots are stored in temporary database.

Deadlock detection performed every 5 seconds by default.

Page 77

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in Oracle
Oracle uses multiversion read consistency (snapshots).
No locks for a read operation, so a read never blocks for a write.

Uses row-level locking and transaction will wait if tries to change
row updated by uncommitted transactions.

System change number (SCN) used for ordering operations.

Stores row lock on data block where row is stored.

Locks held throughout transaction, released at commit/abort
Different types of locks; DDL, DML, mutex, latches

Does deadlock detection using wait-for graphs

Oracle Flashback Technology allows recovering a table to a
point in time. Can be used to recover deleted rows or dropped
tables without doing full restore from backup.

Implements: read committed and serializable isolation levels
Page 78

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in
MongoDB

MongoDB is a NoSQL document database. Performs atomic
updates at document-level with no support for transactions.

MongoDB does not support any of the traditional isolation
levels directly.

Uses reader-writer locks to ensure a data item can be read by
many but only written by one at a time.
Waiting writers have precedence over readers.

Until Mongo 3.0, locking was at the database level. Mongo 3.0
and above perform multiple granularity locking (database,
collection, document).

14

Page 79

COSC 404 - Dr. Ramon Lawrence

Concurrency Control
Summary

Concurrency control protocols are used to ensure concurrent
transactions maintain their isolation.
Two-phase locking (2PL) and multigranularity locking

schemes are commonly used.

Deadlocks must be handled by either deadlock prevention or
deadlock detection and recovery.
Prevention: wound-wait and wait-die schemes

Detection: wait-for graphs and transaction rollback

Multiversion schemes and snapshots create new versions on
every update and determine the correct version for reads.
Allows higher concurrency but uses more space. Very common.

SQL isolation levels are read uncommitted, read committed,
repeatable read, and serializable.
Differ on handling of dirty reads and phantom tuples. Page 80

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Explain how two-phase locking (2PL) works and detect valid 2PL

schedules.

Perform deadlock detection and recovery using wait-for graphs.

Explain and use the timestamp based protocol.

Perform multiple granularity locking using lock modes, rules, and
compatibility matrix.

Understand difference between snapshot based approaches
(MVCC) and using 2PL.

Page 81

COSC 404 - Dr. Ramon Lawrence

Objectives
Define concurrency control, locking protocol, deadlock,

starvation, exclusive and shared locks (compatibility matrix).

Define and use conservative, strict, and rigorous 2PL.

Explain the use of lock conversions (upgrades/downgrades).

Insert locks into a schedule using automatic algorithm.

List some methods for deadlock prevention.

List three factors with deadlock recovery.

Define and motivate a validation based protocol.

Explain the motivation for multiversion 2PL and timestamping.

Explain the general approach for snapshot protocols.

Explain how the phantom phenomenon occurs.

List consistency levels in SQL-92 and determine which
schedules are valid under each consistency level.

