
1

COSC 404
Database System Implementation

Recovery

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Recovery
Motivation

A database system like any computer system is subject to
various types of failures.

The database system must ensure the ACID properties
(specifically durability and atomicity) despite failures.

We will categorize the various types of failures, and provide
approaches for recovering from failures.

The process of restoring the database to a consistent state
after a failure is called recovery, and is performed by the
recovery system.

Page 3

COSC 404 - Dr. Ramon Lawrence

Why is Recoverability Needed?
Recoverability is needed because the database system can fail
for many reasons during transaction processing:
Computer Failure - computer crash due to hardware, software,

or network problems.

Disk Failure - disk fails to correctly read/write blocks

Physical Problems/Catastrophes - external problems
resulting in data loss or system destruction (e.g. earthquake)

Transaction failures (but not database system failures):
Transaction Error - error in transaction (e.g. divide by 0)

Exception Conditions - transaction detects exception
condition (e.g. data not present, insufficient bank funds)

Concurrency Control Enforcement - transaction can be
forced to abort to resolve deadlock or for serializability.

Page 4

COSC 404 - Dr. Ramon Lawrence

Failure Classification
The various types of failures can be classified in three
categories:
Transaction Failures:
 Logical errors: Transaction cannot complete due to some internal error

condition (bad input, data not found).

 System errors: The database system must terminate an active
transaction due to an error condition (e.g. deadlock).

Software Failures:
 System crash: A failure causes the system to crash, but non-volatile

storage contents are not corrupted.

 Examples: software design errors, bugs, buffer/stack overflows

Hardware Failures:
 Disk failure: A head crash destroys all or part of disk storage.

 Examples: overutilization/overloading (used beyond its design), wearout
failure, poor manufacturing

Page 5

COSC 404 - Dr. Ramon Lawrence

Terminology
A system is reliable if it functions as per specifications and
produces a correct output for a given input.

A system failure occurs if it does not function according to
specifications and fails to deliver the service desired.

An error occurs if the system assumes an undesirable state.

A fault is detected when either an error is propagated from one
component to another or the failure of a component is detected.

Page 6

COSC 404 - Dr. Ramon Lawrence

Reliability Mechanisms
Fault Avoidance
Attempt to eliminate all forms of hardware and software errors.

Fault Tolerance
Provide component redundancies that cater to faults occurring

within the system and its components.

Tradeoff:
Fault tolerance requires more components.

More components means more faults.

Therefore, more components are need to handle the increasing
faults.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Storage Structure (review)
Volatile storage does not survive system crashes.
main memory, cache memory

Nonvolatile storage survives system crashes.
Hard drive, solid-state drive

Stable storage is a theoretical form of storage that survives all
failures.
Approximated by maintaining multiple copies on distinct

nonvolatile media.

Practically achieving stable storage requires duplication of
information such as maintaining multiple copies of each block
on separate disks (RAID), or sending copies to remote sites to
protect against disasters such as fire or flooding.
e.g. Multiple availability zones with Amazon hosting Page 8

COSC 404 - Dr. Ramon Lawrence

Data Access
Physical blocks are those blocks residing on the disk. Buffer
blocks are the blocks residing temporarily in main memory.

Block movements between disk and main memory are initiated
through the following two operations:
input(B) transfers the physical block B to main memory.

output(B) transfers the buffer block B to the disk.

Each transaction Ti has its private work area in which local
copies of all data items accessed and updated by it are kept.
Assume that Ti's local copy of a data item X is called xi.

Page 9

COSC 404 - Dr. Ramon Lawrence

Data Access (2)
A transaction transfers data items between system buffer
blocks and its private work-area using operations:
read(X, xi) assigns the value of item X to the local variable xi.

write(X, xi) assigns the value of local variable xi to data item X
in the buffer block.

Both these commands may require an input(BX), if the block BX
in which X resides is not already in memory.

Transactions perform read(X) while accessing X for the first
time; all subsequent accesses are to the local copy. After last
access, transaction executes write(X).

output(BX) need not immediately follow write(X). System can
perform the output operation when it deems fit.

Page 10

COSC 404 - Dr. Ramon Lawrence

y1

buffer

XBuffer Block A

YBuffer Block B

input(A)

output(B)

x1

read(X)
write(Y)

A

B

disk

work area
of T1

work area
of T2

memory

x2

Example of Data Access

Page 11

COSC 404 - Dr. Ramon Lawrence

Buffer Management
The blocks in a database buffer are managed by a
replacement policy (such as LRU).

Other considerations:
steal vs. no-steal – no-steal prevents a buffer that is written by

an uncommitted transaction to be saved to disk (removed from
the buffer). Steal policy allows writing uncommitted updates.
 Implemented using a pin bit on each buffer block.

force vs. no-force – A force approach writes updates for
committed transactions to disk immediately. No-force allows a
committed update to remain in the buffer for some time.

Databases typically implement steal/no-force as it provides the
most flexibility and best performance. Page 12

COSC 404 - Dr. Ramon Lawrence

Log-Based Recovery
In log-based recovery, a log is kept on stable storage, and
consists of a sequence of log records.

The log will record the sequence of database operations, and
can be used to replay the database actions after a failure. The
recovery manager uses the log to restore data items to their
consistent state.

Recovery is related to concurrency control. We will assume
that strict 2PL is performed that guarantees an item updated by
a transaction T cannot be updated by another transaction until
transaction T commits or aborts.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Log-Based Recovery
Log Records

There are several types of log records:
Start Records: When transaction Ti starts, it registers by

writing a <Ti start> log record.

Commit Records: When Ti finishes its last statement and
successfully commits, the record <Ti commit> is written.

Abort Records: When Ti aborts for whatever reason, the
record <Ti abort> is written.

Update Records: Before Ti executes write(X), a log record
<Ti, X, V1, V2> is written, where V1 is the value of X before the
write, and V2 is the value to be written to X.
 That is, Ti has performed a write on data item X. X had value V1 before

the write, and will have value V2 after the write.

Log records are written to stable storage.

Page 14

COSC 404 - Dr. Ramon Lawrence

Log Record Buffering
Log records are buffered in main memory, instead of being
output directly to stable storage. Log records are output to
stable storage when a block of log records in the buffer is full,
or a log force operation is executed.
Several log records can thus be output using a single output

operation, reducing the I/O cost.

These rules must be followed if log records are buffered:
Log records are output in the order in which they are created.

Transaction Ti enters the commit state after the log record <Ti
commit> has been output to stable storage.

Before a block of data in main memory is output to the
database, all log records pertaining to data in that block must
have been output to stable storage. (This rule is called the
write-ahead logging or WAL rule.)

Page 15

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Logging
Undo/redo logging performs recovery by:
undo updates for transactions that are not committed

redo updates for transactions that were committed before
failure

Redo/undo logging (WAL) rule:
Before modifying any database element X on disk because of

changes made by some transaction T, it is necessary that
update record <T, X, V1, V2> appear on disk.

Page 16

COSC 404 - Dr. Ramon Lawrence

Write-Ahead Logging
Question: Write-ahead logging means:

A) If a data item is updated, it must be written to storage before
the log record.

B) If a data item is read, it must read a written, committed value.

C) An updated data item must only be written to storage after
the log record for the update is written to storage.

D) None of the above

Page 17

COSC 404 - Dr. Ramon Lawrence

Recovery with Undo/Redo Logging
The recovery system must:
Redo all the committed transactions in the order earliest-first.

Undo all uncompleted transactions in the order latest-first.

When the system recovers, it does the following:
1) Initialize undo-list and redo-list to empty.

2) First pass: Scan the log backwards from end to build list of
transactions to undo and redo.

3) Second pass: Scan the log forwards from the beginning and
redo updates of committed transactions.

4) Third pass: Scan the log backwards from end and undo
updates of uncommitted transactions.

5) For each undo transaction T, write a <T abort> log record.
Flush the log and resume normal operation.

Page 18

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Recovery Example

The log as it appears at three instances of time:

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.

(b) redo (T0) and undo (T1): A set to 950 and B set to 2050 then
C is restored to 700.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050
respectively. Then C is set to 600.

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>
<T1 commit>

(a)

(b)
(c)

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Logging
Question: How many of the following statements are true?
i) The first pass scans log forward to build undo and redo lists.

ii) The second pass scans log forward performing redo.

iii) The third pass scans log forward performing undo.

iv) An update that is "redone" may or may not change the actual
value in storage.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 20

COSC 404 - Dr. Ramon Lawrence

Checkpoints
Recovery using the entire log would be expensive as the log
grows in size over time.

To reduce the size of the log in order to make recovery faster,
checkpoints are used to speed up recovery.

Page 21

COSC 404 - Dr. Ramon Lawrence

Checkpointing (blocking)
Checkpointing approach that blocks new transactions:
1) Stop accepting new transactions.

2) Wait until all currently running transactions either commit or
abort.

3) Output all log records currently residing in main memory onto
stable storage. (flush log) Output all updated buffers.

4) Write a log record <checkpoint> and flush log again.

5) Resume accepting transactions.

This guarantees all transactions before the checkpoint have
their results reflected in the database. Recovery only needs to
focus on log after the checkpoint.

Page 22

COSC 404 - Dr. Ramon Lawrence

Online (fuzzy) Checkpointing
The biggest problem with the previous technique is the system
must stop processing transactions during the checkpoint.

Online checkpointing allows transactions to continue to run
and be submitted during the procedure:
1) Write a log record <checkpoint start (T1 ... TN)> where T1...TN

are the currently executing transactions. (flush log)

2) Write to disk all dirty buffers that have been modified before
the checkpoint start. The buffers written include buffers
changed by uncommitted transactions.
 Note that the checkpoint procedure does not write dirty buffers that get

modified between the checkpoint start and the checkpoint end records.

3) After all dirty buffers (recorded at checkpoint start) have
been flushed, write a log record <checkpoint end> and flush the
log.

Page 23

COSC 404 - Dr. Ramon Lawrence

Online Checkpointing
Question: How many of the following statements are true?
i) Transactions may still run during an online checkpoint.

ii) All updates in the buffer (committed or not) when the
checkpoint starts are written to storage by end of checkpoint.

iii) Updates in the buffer done after checkpoint start are written to
storage.

iv) The checkpoint start record contains all transactions, running
and committed, before the checkpoint.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 24

COSC 404 - Dr. Ramon Lawrence

Recovery using Undo/Redo and
Checkpointing

Steps for recovery using undo/redo and checkpointing:
1) First pass backwards scan stops at the first start checkpoint

log record found with a matching end checkpoint.
 This scan will enumerate all transactions since last checkpoint and all

active transactions when checkpoint began.

 Divide these transactions into undo and redo lists.

2) Second pass forward scan starts at start checkpoint record
and ends when all transactions are redone.

3) Third pass backwards scan starts at end of log and stops
when all transactions in the undo list have been undone.
 We know a transaction has no more operations when we encounter its

transaction start log record.

5

Page 25

COSC 404 - Dr. Ramon Lawrence

T

T

T

T

T

T

T
T

T

T

T

T

T1

2

3

4

5 6

7

8 9

10

11

12
13

System
Start-Up

System
Crash

Time

Checkpoint

Undo/Redo Checkpoints Example

What transactions are undone, redone, or committed?

Page 26

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Recovery Example
The recovery algorithm on the following log:

Checkpoint: T1, T2 were active (undo-list)

T3 in redo-list.
Redo T3 write on D value now 10.

Undo T2 write on C value now 10.
Undo T2 write on C value now 0.

Undo T1 write on B value now 0.

Redo T3 write on A value now 20.

Undo T2 complete.

Undo T1 complete. (Undo complete.)

First Backwards Pass. (build lists from end)

Backwards Pass - Undo (start at end)
Forwards Pass - Redo (start at checkpoint)

<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start>
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint start (T1, T2)>
<checkpoint end>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>

<T3 commit>
Write abort transaction to log.<T1 abort>
Write abort transaction to log.<T2 abort>

Page 27

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Recovery with Checkpoints
Question: How many of the following statements are true?
i) The first pass stops at the last checkpoint end record.

ii) The second pass starts at the last checkpoint start record with
a matching checkpoint end record.

iii) The third pass stops when the start record for all transactions
to be undone have been seen.

iv) The second pass stops at the end of the log.

v) The first pass starts at the end of the log.

A) 0

B) 1

C) 2

D) 3

E) 4 Page 28

COSC 404 - Dr. Ramon Lawrence

ARIES Recovery Algorithm
Recovery algorithm described is a simplification of the ARIES
recovery algorithm that is widely used in databases.

Three steps:
1) Analysis – determine dirty pages in buffer, active

transactions, and starting point for REDO step

2) REDO – reapplies updates of committed transactions

3) UNDO – scan log backwards undoing updates for non-
committed transactions

Implementation details:
Every log record has a log sequence number (LSN).

Also stores Transaction Table and Dirty Page Table.

Handles failure during recovery by logging undo operations so
do not have to be repeated (uses compensation log records).

Page 29

COSC 404 - Dr. Ramon Lawrence

Nonvolatile Storage Failures
Solution: Periodically dump the entire contents of the
database to stable storage.

No transaction may be active during the dump procedure. A
procedure similar to checkpointing must take place:
Output all log records currently residing in main memory onto

stable storage.

Output all buffer blocks onto the disk.

Copy the contents of the database to stable storage.

Output a record <dump> to log on stable storage.

To recover from disk failure, restore database from most recent
dump. Then log is consulted and all transactions that
committed since the dump are redone.
Can be extended to allow transactions to be active during

dump; known as fuzzy or online dump. Page 30

COSC 404 - Dr. Ramon Lawrence

Advanced Recovery Techniques
Support high-concurrency locking techniques, such as those
used for B+-tree concurrency control.

Operations like B+-tree insertions and deletions release locks
early. They cannot be undone by restoring old values (physical
undo), since once a lock is released, other transactions may
have updated the B+-tree.

Instead, insertions/deletions are undone by executing a
deletion/insertion operation (known as logical undo).
For such operations, undo log records should contain the undo

operation to be executed; called logical undo logging, in
contrast to physical undo logging.

Redo information is logged physically (that is, new value for
each write) even for such operations.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Logging Questions

Explain undo/redo logging recovery for the following log as it
appears at three instances of time:

(a)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
System Failure

(c)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
<checkpoint start (T2)>
<T2, C, 14, 15>
<T3 start>
<T3, D, 19, 20>
<checkpoint end>
<T2 commit>
System Failure

(b)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
<checkpoint start (T2)>
<T2, C, 14, 15>
<T3 start>
<T3, D, 19, 20>
System Failure

Page 32

COSC 404 - Dr. Ramon Lawrence

Summary
A database system must be able to recover in the presence of
hardware and software failures. The database system must
ensure a consistent database after failure and preserve the
ACID properties.

Log-based recovery records all updates in a log and undo/redo
operations are used to restore the database to a consistent state
(write-ahead logging is used).

Checkpointing reduces the cost of log-based recovery.

Database backups are needed to handle catastrophic failures.

Advanced (logical) recovery is necessary for B+-tree indexes.

Page 33

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Perform Undo/Redo logging with checkpoints.

Major Theme:
The recovery system rebuilds the database into a consistent

state after failure using the log records saved to stable store
while the database was operational. Various methods including
checkpoints are used to speed-up recovery after failures.

Page 34

COSC 404 - Dr. Ramon Lawrence

Objectives
Define: recovery and recovery system

List the types of failures and motivation for recovery.

Define: reliable, failure, error, fault, stable storage

Compare/contrast fault avoidance versus fault tolerance.

Read and write log records in a log.

Define: write-ahead logging rule (WAL), log force operation

Motivate the importance of checkpoints and online
checkpointing.

Compare/contrast physical versus logical logging.

