
1

COSC 404
Database System Implementation

Data Storage and Organization

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Storage and Organization
Overview

The first task in building a database system is determining how
to represent and store the data.

Since a database is an application that is running on an
operating system, the database must use the file system
provided by the operating system to store its information.
However, many database systems implement their own file

security and organization on top of the operating system file
structure.

We will study techniques for storing and representing data.

Page 3

COSC 404 - Dr. Ramon Lawrence

Representing Data on Devices
Physical storage of data is dependent on the computer system
and its associated devices on which the data is stored.

How we represent and manipulate the data is affected by the
physical media and its properties.
sequential versus random access

read and write costs

temporary versus permanent memory

Page 4

COSC 404 - Dr. Ramon Lawrence

Review:
Memory Definitions

Temporary memory retains data only while the power is on.
Also referred to as volatile storage.

e.g. dynamic random-access memory (DRAM) (main memory)

Permanent memory stores data even after the power is off.
Also referred to as non-volatile storage.

e.g. flash memory, hard drive, SSD, DVD, tape drives

Most permanent memory is secondary storage because the
memory is stored in a separate device such as a hard drive.

Cache is faster memory used to store a subset of a larger,
slower memory for performance.
processor cache (Level 1 & 2), disk cache, network cache

Page 5

COSC 404 - Dr. Ramon Lawrence

Research Question
In-Memory Database

Question: Does an in-memory database need a secondary
storage device for persistence?

A) Yes

B) No

Page 6

COSC 404 - Dr. Ramon Lawrence

Review:
Sequential vs. Random Access

RAM, hard drives, and flash memory allow random access.
Random access allows retrieval of any data location in any
order.

Tape drives allow sequential access. Sequential access
requires visiting all previous locations in sequential order to
retrieve a given location.
That is, you cannot skip ahead, but must go through the tape in

order until you reach the desired location.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Review:
Memory Sizes

Memory size is a measure of memory storage capacity.
Memory size is measured in bytes.
Each byte contains 8 bits - a bit is either a 0 or a 1.

A byte can store one character of text.

Large memory sizes are measured in:
kilobytes (KBs) = 103 = 1,000 bytes

kibibyte (KiB) = 210 = 1,024 bytes

megabytes (MBs) = 106 = 1,000,000 bytes

mebibyte (MiBs) = 220 = 1,048,576 bytes

gigabytes (GBs) = 109 = 1,000,000,000 bytes

gibibytes (GiBs) = 230 = 1,073,741,824 bytes

terabytes (TBs) = 1012 = 1,000,000,000,000 bytes

tebibytes (TiBs) = 240 = 1,099,511,627,776 bytes
Page 8

COSC 404 - Dr. Ramon Lawrence

Transfer Size, Latency, and Bandwidth
Transfer size is the unit of memory that can be individually
accessed, read and written.
DRAM, EEPROM – byte addressable

Hard drive, flash – block addressable (must read/write blocks)

Latency is the time it takes for information to be delivered after
the initial request is made.

Bandwidth is the rate at which information can be delivered.
Raw device bandwidth is the maximum sustained transfer rate

of the device to the interface controller.

Interface bandwidth is the maximum sustained transfer rate of
the interface device onto the system bus.

Page 9

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Dynamic Random Access Memory

Dynamic random access memory (DRAM) is general
purpose, volatile memory currently used in computers.
DRAM uses only one transistor and one capacitor per bit.

DRAM needs periodic refreshing of the capacitor.

DRAM properties:
low cost, high capacity

volatile

byte addressable

latency ~ 10 ns

bandwidth = 5 to 20 GB/s

Page 10

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Processor Cache

Processor cache is faster memory storing recently used data
that reduces the average memory access time.
Cache is organized into lines/blocks of size from 64-512 bytes.

Various levels of cache with different performance.

Cache properties:
higher cost, very low capacity

cache operation is hardware controlled

byte addressable

latency – a few clock cycles

bandwidth – very high, limited by processor bus

Page 11

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Flash Memory

Flash memory is used in many portable devices (cell phones,
music/video players) and also solid-state drives.

NAND Flash Memory properties:
non-volatile

low cost, high capacity

block addressable

asymmetric read/write performance: reads are fast, writes
(which involve an erase) are slow

erase limit of 1,000,000 cycles

bandwidth (per chip): 40 MB/s (read), 20 MB/s (write)

Page 12

COSC 404 - Dr. Ramon Lawrence

Memory Devices
EEPROM

EEPROM (Electrically Erasable Programmable Read-Only
Memory) is non-volatile and stores small amounts of data.
Often available on small microprocessors.

EEPROM properties:
non-volatile

high cost, low capacity

byte addressable

erase limit of 1,000,000 cycles

latency: 250 ns

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Magnetic Tapes

Tape storage is non-volatile and is used primarily for backup
and archiving data.
Tapes are sequential access devices, so they are much slower

than disks.

Since most databases can be stored in hard drives and RAID
systems that support direct access, tape drives are now
relegated to secondary roles as backup devices.
Database systems no longer worry about optimizing queries for

data stored on tapes.

"Tape is Dead. Disk is Tape. Flash is Disk. RAM Locality is
King." – Jim Gray (2006), Microsoft/IBM, Turing Award Winner 1998 - For
seminal contributions to database and transaction processing research and technical leadership
in system implementation.

Page 14

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Solid State Drives

A solid state drive uses flash memory for storage.

Solid state drives have many benefits over hard drives:
Increased performance (especially random reads)

Better power utilization

Higher reliability (no moving parts)

The performance of the solid state drive depends as much on
the drive organization/controller as the underlying flash chips.
Write performance is an issue and there is a large erase cost.

Solid state drives are non-volatile and block addressable like
hard drives. The major difference is random reads are much
faster (no seek time). This has a dramatic affect on the
database algorithms used, and it is an active research topic.

Page 15

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Hard Drives

Data is stored on a hard drive on the
surface of platters. Each platter is
divided into circular tracks, and each
track is divided into sectors. A sector is
the smallest unit of data that can be read
or written. A cylinder i consists of the i-
th track of all the platters (surfaces).

The read-write head is positioned close
to the platter surface where it
reads/writes magnetically encoded data.

To read a sector, the head is moved
over the correct track by the arm
assembly. Since the platter spins
continuously, the head reads the data
when the sector rotates under the head.

Head-disk assemblies allow multiple
disk platters on a single spindle with
multiple heads (one per platter) mounted
on a common arm. Page 16

COSC 404 - Dr. Ramon Lawrence

Disk Controller and Interface
The disk controller interfaces between the computer system
and the disk drive hardware.
Accepts high-level commands to read or write a sector.

Initiates actions such as moving the disk arm to the right track
and actually reading or writing the data.

Uses a data buffer and will re-order requests for increased
performance.

The disk controller has the interface to the computer.
E.g. 3.0 Gbit/s SATA can transfer from disk buffer to computer

at 300 MB/s. Note that 7200 RPM disk has a sustained disk-to-
buffer transfer rate of only about 70 MB/sec.

Page 17

COSC 404 - Dr. Ramon Lawrence

Device Performance Calculations
We will use simple models of devices to help understand the
performance benefits and trade-offs.

These models are simplistic yet provide metrics to help
determine when to use particular devices and their
performance.

Page 18

COSC 404 - Dr. Ramon Lawrence

Memory Performance Calculations
Memory model will consider only transfer rate (determined from
bus and memory speed). We will assume sequential and
random transfer rates are the same.

Limitations:
There is an advantage to sequential access compared to

completely random access, especially with caching. Cache
locality has a major impact as can avoid accessing memory.

Memory alignment (4 byte/8 byte) matters.

Memory and bus is shared by multiple processes.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Memory Performance Calculations
Example

A system has 8 GB DDR4 memory with 20 GB/sec. bandwidth.

Question 1: How long does it take to transfer 1 contiguous
block of 100 MB memory?

transfer time = 100 MB / 20,000 MB/sec. = 0.005 sec = 5 ms

Question 2: How long does it take to transfer 1000 contiguous
blocks of 100 KB memory?

transfer time = 1000 * (100 KB / 20,000,000 KB/sec.)

= 0.005 sec = 5 ms

Page 20

COSC 404 - Dr. Ramon Lawrence

Disk Performance Measures
Disk capacity is the size of the hard drive.
= #cylinders * #tracks/cylinder * #sectors/track * #bytes/sector

Disk access time is the time required to transfer data.
= seek time + rotational latency + transfer time

Seek time – time to reposition the arm over the correct track.
Average is 1/3rd the worst. (depends on arm position and target track)

Rotational latency – time for first sector to appear under head.
Average latency is 1/2 of worst case. (one half rotation of disk)

 Transfer time – time to transfer data to memory.

Data-transfer rate – the rate at which data can be retrieved
from disk which is directly related to the rotational speed.

Mean time to failure (MTTF) – the average time the disk is
expected to run continuously without any failure.

Page 21

COSC 404 - Dr. Ramon Lawrence

Disk Performance Example
Given a hard drive with 10,000 cylinders, 10 tracks/cylinder, 60
sectors/track, and 500 bytes/sector, calculate its capacity.

Answer:
capacity = 10000 * 10 * 60 * 500 = 3,000,000,000 bytes

= 3,000,000,000 bytes / 1,048,576 bytes/MiB

= 2,861 MiB = 2.8 GiB

= 3,000 MB = 3 GB

Page 22

COSC 404 - Dr. Ramon Lawrence

Disk Performance Example (2)
If the hard drive spins at 7,200 rpm and has an average seek
time of 10 ms, how long does a 2,000 byte transfer take?

Answer:
transfer size = 2,000 bytes / 500 bytes/sector = 4 sectors

revolution time = 1 / (7200 rpm / 60 rpm/sec) = 8.33 ms

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time * #sectorsTransfered / #sectors/track

= 8.33 ms * 4 / 60 = 0.56 ms

total transfer time = seek time + latency + transfer time

= 10 ms + 4.17 ms + 0.56 ms = 14.73 ms

Page 23

COSC 404 - Dr. Ramon Lawrence

Sequential versus Random
Disk Performance Example

A hard drive spins at 7,200 rpm, has an average seek time of
10 ms, and a track-to-track seek time of 2 ms. How long does
a 1 MiB transfer take under the following conditions?
Assume 512 bytes/sector, 64 sectors/track, and 1 track/cyl.

1) The data is stored randomly on the disk.
transfer size = 1,048,576 bytes / 512 bytes/sector = 2048 sectors

revolution time = 1 / (7200 rpm / 60 rpm/sec) = 8.33 ms

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time / #sectors/track

= 8.33 ms / 64 = 0.13 ms per sector

total transfer time = (seek time + latency + transfer time) * #sectors

= (10 ms + 4.17 ms + 0.13 ms)*2048

= 29,286.4 ms = 29.3 seconds Page 24

COSC 404 - Dr. Ramon Lawrence

Sequential versus Random
Disk Performance Example (2)

2) The data is stored sequentially on the disk .
transfer size = 1,048,576 bytes / 512 bytes/sector = 2048 sectors

= 2048 sectors / 64 sectors/track = 32 tracks

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time / #sectors/track

= 8.33 ms / 64 = 0.13 ms per sector

total transfer time = seek time + latency + transfer time * #sectors +

track-to-track seek time * (#tracks-1)

= 10 ms + 4.17 ms + 0.13 ms*2048 + 2 ms * 31

= 342.41 ms = 0.34 seconds

3) What would be the optimal configuration of data if the hard
drive had 4 heads? What is the time in this case?

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Disk Performance Practice Questions
A Seagate Cheetah 15K 3.5" hard drive has 8 heads, 50,000
cylinders, 3,000 sectors/track, and 512 bytes/sector. Its average
seek time is 3.4 ms with a speed of 15,000 rpm, and a reported
data transfer rate of 600 MB/sec on a 6-Gb/S SAS interface.

1) What is the capacity of the drive?

2) What is the latency of the drive?

3) What is the maximum sustained transfer rate?

4) What is the total access time to transfer 400KiB?

Page 26

COSC 404 - Dr. Ramon Lawrence

Disk Performance Practice Questions
Older Drive

The Maxtor DiamondMax 80 has 34,741 cylinders, 4 platters,
each with 2 heads, 576 sectors/track, and 512 bytes/sector. Its
average seek time is 9 ms with a speed of 5,400 rpm, and a
reported maximum interface data transfer rate of 100 MB/sec.

1) What is the capacity of the Maxtor Drive?

2) What is the latency of the drive?

3) What is the actual maximum sustained transfer rate?

4) What is the total access time to transfer 4KB?

Page 27

COSC 404 - Dr. Ramon Lawrence

Hard Drive Model Limitations and Notes
1) Disk sizes are quoted after formatting.
Formatting is done by the OS to divide the disk into blocks.
A sector is a physical unit of the disk while a block is a logical OS unit.

2) Blocks are non-continuous. Interblock gaps store control
information and are used to find the correct block on a track.
Since these gaps do not contain user data, the actual transfer rate is less

than the theoretical transfer rate based on the rotation of the disk.
Manufactures quote bulk transfer rates (BTR) that measure the

performance of reading multiple adjacent blocks when taking gaps into
account. BTR = B/(B+G) * TR (B-block size, G-gap size)

3) Although the bit density on the media is relatively consistent,
the number of sectors per track is not.
More sectors/track for tracks near outer edge of platter.
Faster transfer speed when reading outer tracks.

4) Buffering and read-ahead at controller and re-ordering
requests (elevator algorithm) used to increase performance.

Page 28

COSC 404 - Dr. Ramon Lawrence

SSD Performance Calculations
SSD model will consider:
IOPS – Input/Output Operations per Second (of given data size)

latency

bandwidth or transfer rate

Different performance for read and write operations.

Limitations:
Write bandwidth is not constant. It depends on request ordering

and volume, space left in hard drive, and SSD controller
implementation.

Page 29

COSC 404 - Dr. Ramon Lawrence

SSD Performance Calculations
Examples

Question 1: A SSD has read bandwidth of 500 MB/sec. How
long does it take to read 100 MB of data?

read time = 100 MB / 500 MB/sec. = 0.2 sec

Question 2: The SSD IOPS for 4 KB write requests is 25,000.
What is its effective write bandwidth?

write bandwidth = 25,000 IOPS * 4 KB requests

= 100,000 KB/sec. = 100 MB/sec.

Page 30

COSC 404 - Dr. Ramon Lawrence

Device Performance
Question: What device would be the fastest to read 1 MB of
data?

A) DRAM with bandwidth of 20 MB/sec.

B) SSD with read 400 IOPS for 100 KB data chunks.

C) 7200 rpm hard drive with seek time of 8 ms. Assume all
data is on one track.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Summary of Memory Devices

Memory

Type

Volatile? Capacity Latency Bandwidth Transfer

Size

Notes

DRAM yes High Small High Byte Best price/speed.

Cache Yes Low Lowest Very high Byte Large reduction in
memory latency.

NAND

Flash
No Very

high Small High Block Asymmetric
read/write costs.

EEPROM No Very low Very
small High Byte High cost per bit.

On small CPUs.
Tape

Drive
No Very

high
Very
high Medium Block Sequential access:

Even lost backup?

Solid
State
Drive

No Very
high High Medium Block Great random I/O.

Issue in write costs.

Hard
drive No Very

high High Medium block
Beats SSDs by

cost/bit but not by
performance/cost.

Page 32

COSC 404 - Dr. Ramon Lawrence

RAID
Redundant Arrays of Independent Disks is a disk
organization technique that utilizes a large number of
inexpensive, mass-market disks to provide increased reliability,
performance, and storage.
Originally, the "I" stood for inexpensive as RAID systems were a

cost-effective alternative to large, expensive disks. However,
now performance and reliability are the two major factors.

Page 33

COSC 404 - Dr. Ramon Lawrence

Improvement of Reliability via
Redundancy

RAID systems improve reliability by introducing redundancy to
the system as they store extra information that can be used to
rebuild information lost due to a disk failure.
Redundancy occurs by duplicating data across multiple disks.

Mirroring or shadowing duplicates an entire disk on another.
Every write is performed on both disks, and if either disk fails,
the other contains all the data.

By introducing more disks to the system the chance that some
disk out of a set of N disks will fail is much higher than the
chance that a specific single disk will fail.
E.g., A system with 100 disks, each with MTTF of 100,000

hours (approx. 11 years), will have a system MTTF of 1000
hours (approx. 41 days).

Page 34

COSC 404 - Dr. Ramon Lawrence

Review: Parity
Parity is used for error checking. A parity bit is an extra bit
added to the data. A single parity bit can detect one bit error.

In odd parity the number of 1 bits in the data plus the parity bit
must be odd. In even parity, the number of 1 bits is even.

Example: What is the parity bit with even parity and the bit
string: 01010010?
Answer: The parity bit must be a 1, so that the # of 1's is even.

Page 35

COSC 404 - Dr. Ramon Lawrence

Parity Question
Question: What is the parity bit with odd parity and the bit
string: 11111110?

A) 0

B) 1

C) 2

Page 36

COSC 404 - Dr. Ramon Lawrence

Improvement in Performance via
Parallelism

The other advantage of RAID systems is increased parallelism.
With multiple disks, two types of parallelism are possible:
1. Load balance multiple small accesses to increase throughput.

2. Parallelize large accesses to reduce response time.

Maximum transfer rates can be increased by allocating
(striping) data across multiple disks then retrieving the data in
parallel from the disks.
Bit-level striping – split the bits of each byte across the disks
In an array of eight disks, write bit i of each byte to disk i.

Each access can read data at eight times the rate of a single disk.

But seek/access time worse than for a single disk.

Block-level striping – with n disks, block i of a file goes to disk
(i mod n) + 1

7

Page 37

COSC 404 - Dr. Ramon Lawrence

RAID Levels
There are different RAID organizations, or RAID levels, that
have differing cost, performance and reliability characteristics:
Level 0: Striping at the block level (non-redundant).

Level 1: Mirrored disks (redundancy)

Level 2: Memory-Style Error-Correcting-Codes with bit striping.

Level 3: Bit-Interleaved Parity - a single parity bit used for error
correction. Subsumes Level 2 (same benefits at a lower cost).

Level 4: Block-Interleaved Parity - uses block-level striping,
and keeps all parity blocks on a single disk (for all other disks).

Level 5: Block-Interleaved Distributed Parity - partitions data
and parity among all N + 1 disks, rather than storing data in N
disks and parity in 1 disk. Subsumes Level 4.

Level 6: P+Q Redundancy scheme - similar to Level 5, but
stores extra info to guard against multiple disk failures. Page 38

COSC 404 - Dr. Ramon Lawrence

RAID Levels Discussion
Level 0 is used for high-performance
where data loss is not critical (parallelism).

Level 1 is for applications that require
redundancy (protection from disk failures)
with minimum cost.
 Level 1 requires at least two disks.

Level 5 is a common because it offers both
reliability and increased performance.
With 3 disks, the parity block for nth block

is stored on disk (n mod 3) + 1. Do not
have single disk bottleneck like Level 4.

Level 6 offers extra redundancy compared
to Level 5 and is used to deal with multiple
drive failures.

Page 39

COSC 404 - Dr. Ramon Lawrence

RAID Question
Question: What RAID level offers the high performance but no
redundancy?

A) RAID 0

B) RAID 1

C) RAID 5

D) RAID 6

Page 40

COSC 404 - Dr. Ramon Lawrence

RAID Practice Question
Question: The capacity of a hard drive is 800 GB. Determine
the capacity of the following RAID configurations:

i) 8 drives in RAID 0 configuration

ii) 8 drives in RAID 1 configuration

iii) 8 drives in RAID 5 configuration

A) i) 6400 GB ii) 3200 GB iii) 5600 GB

B) i) 3200 GB ii) 6400 GB iii) 5600 GB

C) i) 6400 GB ii) 3200 GB iii) 6400 GB

D) i) 3200 GB ii) 3200 GB iii) 6400 GB

Page 41

COSC 404 - Dr. Ramon Lawrence

RAID Summary
Level Performance Protection Capacity (for N disks)

0
Best

(parallel read/write)

Poor

(lose all on 1 failure)
N

1
Good

(write slower as 2x)

Good

(have drive mirror)
N / 2

5
Good

(must write parity
block)

Good

(one drive can fail)
N - 1

6
Good

(must write multiple
parity blocks)

Better

(can have as many
drives fail as

dedicated to parity)

N – X

(where X is # of parity
drives such as 2)

Page 42

COSC 404 - Dr. Ramon Lawrence

File Interfaces
Besides the physical characteristics of the media and device,
how the data is allocated on the media affects performance
(file organization).

The physical device is controlled by the operating system. The
operating system provides one or more interfaces to accessing
the device.

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Block-Level Interface
A block-level interface allows a program to read and write a
chunk of memory called a block (or page) from the device.

The page size is determined by the operating system. A page
may be a multiple of the physical device's block or sector size.

The OS maintains a mapping from logical page numbers
(starting at 0) to physical sectors/blocks on the device.

Page 44

COSC 404 - Dr. Ramon Lawrence

Block-Level Interface Operations
The block level operations at the OS level include:
read(n,p) – read block n on disk into memory page p

write(n,p) – write memory page p to block n on disk

allocate(k,n) – allocate space for k contiguous blocks on device
as close to block n as possible and return first block

free(k,n) – marks k contiguous blocks starting at n as unused

The OS must maintain information on which blocks on the
device are used and which are free.

Page 45

COSC 404 - Dr. Ramon Lawrence

Byte-Level Interface
A byte-level interface allows a program to read and write
individually addressable bytes from the device.

A device will only directly support a byte-level interface if it is
byte-addressable. However, the OS may provide a file-level
byte interface to a device even if it is only block addressable.

Page 46

COSC 404 - Dr. Ramon Lawrence

File-Level Interface
A file-level interface abstracts away the device addressable
characteristics and provides a standard byte-level interface for
files to programs running on the OS.

A file is treated as a sequence of bytes starting from 0. File
level commands allow for randomly navigating in the file and
reading/writing at any location at the byte level.

Since a device may not support such access, the OS is
responsible for mapping the logical byte address space in a file
to physical device sectors/blocks. The OS performs buffering
to hide I/O latency costs.
Although beneficial, this level of abstraction may cause poor

performance for I/O intensive operations.

Page 47

COSC 404 - Dr. Ramon Lawrence

Databases and File Interfaces
A database optimizes performance using device characteristics,
so the file interface provided on the device is critical.

General rules:
The database system needs to know block boundaries if the

device is block addressable. It should not use the OS file
interface mapping bytes to blocks.
Full block I/Os should be used. Transferring groups of blocks is ideal.

If the device has different performance for random versus
sequential I/O and reads/writes, it should exploit this knowledge.

If placement of blocks on the device matters, the database
should control this not the OS.

The database needs to perform its own buffering separate from
the OS. Cannot use the OS virtual memory!

Page 48

COSC 404 - Dr. Ramon Lawrence

Databases and File Interfaces (2)
Two options:
1) Use a RAW block level interface to the device and manage

everything. Very powerful but also a lot of complexity.

2) Use the OS file-level interface for data. Not suitable in
general as OS hides buffering and block boundaries.

Compromise: Allocate data in OS files but treat files as raw
disks. That is, do not read/write bytes but read/write to the file at
the block level.
The OS stills maps from logical blocks to physical blocks on the

device and manages the device.

BUT many performance issues with crossing block boundaries or
reading/writing at the byte-level are avoided.

Many systems make this compromise.

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Representing Data in Databases
Overview

A database is made up of one or more files.
Each file contains one or more blocks.

Each block has a header and contains one or more records.

Each record contains one or more fields.

Each field is a representation of a data item in a record.

Page 50

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Consider an employee database where each employee record
contains the following fields:
name : string

age : integer

salary : double

startDate : Date

picture : BLOB

Each field is data that is represented as a sequence of bytes.

How would we store each field in memory or on disk?

Page 51

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Integers and Doubles

Integers are represented in two's complement format. The
amount of space used depends on the machine architecture.
e.g. byte, short, int, long

Double values are stored using a mantissa and an exponent:
Represent numbers in scientific format: N = m * 2e

m - mantissa, e - exponent, 2 - radix

Note that converting from base 10 to base 2 is not always precise, since
real numbers cannot be represented precisely in a fixed number of bits.

The most common standard is IEEE 754 Format:
32 bit float - 1-bit sign; 8-bit exponent; 23-bit mantissa

64 bit double - 1-bit sign; 11-bit exponent; 52-bit mantissa

Page 52

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Doubles Example

The salary $56,455.01 stored as 4 consecutive bytes is:
Hexadecimal value is: 475C8703 Stored value is: 56455.012

Divided into bytes looks like this:

01000111 01011100 10000111 00000011

F001 F002 F003 F004
Memory
Address

sign bit exponent

0 10001110 10111001000011100000011

mantissa

Page 53

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Strings and Characters

A character is represented by mapping the character symbol
to a particular number.
ASCII - maps characters/symbols to a number from 0 to 255.

UNICODE - maps characters to a two-byte number (0 to
32,767) which allows for the encoding of larger alphabets.

A string is a sequence of characters allocated in consecutive
memory bytes. A pointer indicates the location of the first byte.
Null-terminated string - last byte value of 0 indicates end

Byte-length string - length of string in bytes is specified
(usually in the first few bytes before string starts).

Fixed-length string - always the same size.

Page 54

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Dates

A date value can be represented in multiple ways:
Integer representation - number of days past since a given date
Example: # days since Jan 1, 1900

String representation - represent a date's components (year,
month, day) as individual characters of a string
Example: YYYYMMDD or YYYYDDD

Please do not reinvent Y2K by using YYMMDD!!

A time value can also be represented in similar ways:
Integer representation - number of seconds since a given time
Example: # of seconds since midnight

String representation - hours, minutes, seconds, fractions
Example: HHMMSSFF

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
BLOBs and Large Objects

A BLOB (Binary Large Object) type is represented as a
sequence of consecutive bytes with the size of the object
stored in the first few bytes.

All variable length types and objects will store a size as the first
few bytes of the object.

Fixed length objects do not require a size, but may require a
type identifier.

Page 56

COSC 404 - Dr. Ramon Lawrence

Storing Records in Memory
Now that we can allocate space for each field in memory, we
must determine a way of allocating an entire record.

A record consists of one or more fields grouped together.
Each tuple of a relation in the relational model is a record.

Two main types of records:
Variable-length records - the size of the record varies.

Fixed-length records - all records have the same size.

Page 57

COSC 404 - Dr. Ramon Lawrence

Separating Fields of a Record
The fields of a record can be separated in multiple ways:
1) No separator - store length of each field, so do not need a

separate separator (fixed length field).
Simple but wastes space within a field.

2) Length indicator - store a length indicator at the start of the
record (for the entire record) and a size in front of each field.
Wastes space for each length field and need to know length beforehand.

3) Use offsets – at start of record store offset to each field

4) Use delimiters - separate fields with delimiters such as a
comma (comma-separated files).
Must make sure that delimiter character is not a valid character for field.

5) Use keywords - self-describing field names before field
value (XML and JSON).
Wastes space by using field names.

Page 58

COSC 404 - Dr. Ramon Lawrence

Schemas
A schema is a description of the record layout.

A schema typically contains the following information:
names and number of fields

size and type of each field

field ordering in record

description or meaning of each field

Page 59

COSC 404 - Dr. Ramon Lawrence

Schemas
Fixed versus Variable Formats

If every record has the same fields with the same types, the
schema defines a fixed record format.
Relational schemas generally define a fixed format structure.

It is also possible to have no schema (or a limited schema)
such that not all records have the same fields or organization.
Since each record may have its own format, the record data

itself must be self-describing to indicate its contents.

XML and JSON documents are considered self-describing with
variable schemas (variable record formats).

Page 60

COSC 404 - Dr. Ramon Lawrence

Schemas
Fixed Format Example

Employee record is a fixed relational schema format:
Field Name Type Size in Bytes

name char(10) 10

age integer 4

salary double 8

startDate Date 8 (YYYYMMDD)

Example record:
Joe Smith, 35, $50,000, 1995/05/28

Memory allocation:

J OE SM I TH 0 0 3 5 00 0 5 0 0 0 0 1 9 9 5 0 5 2 8

in ASCII? 00000023 in IEEE 754? in ASCII?

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Schemas
Fixed Format with Variable fields

It is possible to have a fixed format (schema), yet have variable
sized records.
In the Employee example, the picture field is a BLOB which will

vary in size depending on the type and quality of the image.

It is not efficient to allocate a set memory size for large objects,
so the fixed record stores a pointer to the object and the size of
the object which have fixed sizes.

The object itself is stored in a separate file or location from the
rest of the records.

Page 62

COSC 404 - Dr. Ramon Lawrence

Variable Formats
XML and JSON

XML:

JSON:

<employees>
<employee>

<name>Joe Smith</name> <age>35</age>
<salary>50000</salary> <hired>1995/05/28</hired>

</employee>
<employee>

<name>CEO</name><age>55</age><hired>1994/06/23</hired>
</employee>
</employees>

{ "employees": [{ "name":"Joe Smith", "age":35,
"salary":50000, "hired":"1995/05/28"},
{ "name":"CEO", "age":55,
"hired":"1994/06/23"}] }

Page 63

COSC 404 - Dr. Ramon Lawrence

Variable Format Discussion
Variable record formats are useful when:
The data does not have a regular structure in most cases.

The data values are sparse in the records.

There are repeating fields in the records.

The data evolves quickly so schema evolution is challenging.

Disadvantages of variable formats:
Waste space by repeating schema information for every record.

Allocating variable-sized records efficiently is challenging.

Query processing is more difficult and less efficient when the
structure of the data varies.

Page 64

COSC 404 - Dr. Ramon Lawrence

Format and Size Question
Question: JSON and XML are best described as:

A) fixed format, fixed size

B) fixed format, variable size

C) variable format, fixed size

D) variable format, variable size

Page 65

COSC 404 - Dr. Ramon Lawrence

Relational Format and Size Question
Question: A relational table uses a VARCHAR field for a
person's name. It can be best described as:

A) fixed format, fixed size

B) fixed format, variable size

C) variable format, fixed size

D) variable format, variable size

Page 66

COSC 404 - Dr. Ramon Lawrence

Fixed vs. Variable Formats Discussion
There are also many variations that have properties of both
fixed and variable format records:
Can have a record type code at the beginning of each record to

denote what fixed schema it belongs to.
Allows the advantage of fixed schemas with the ability to define and

store multiple record types per file.

Define custom record headers within the data that is only used
once.
Do not need separate schema information, and do not repeat the

schema information for every record.

It is also possible to have a record with a fixed portion and a
variable portion. The fixed portion is always present, while the
variable portion lists only the fields that the record contains.

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Fixed versus Variable Formats
Discussion (2)

We have seen fixed length/fixed format records, and variable
length/variable format records.

1) Do fixed format and variable length records make sense?

2) Do variable format and fixed length records make sense?

|320587 | Joe Smith | SC | 95 | 3 |
|184923 | Kathy Li | EN | 92 | 3 |
| 249793 | Albert Chan | SC | 94 | 3 | Padding

Padding
Padding

Surprisingly, Yes. Allocate a fixed size record then put as
many fields with different sizes as you want and pad the rest.

Yes, you can have a fixed format schema where certain types
have differing sizes. BLOBs are one example.

Page 68

COSC 404 - Dr. Ramon Lawrence

Research Question
CHAR versus VARCHAR

Question: We can represent a person's name in MySQL using
either CHAR(50) or VARCHAR(50). Assume that the person's
name is 'Joe'. How much space is actually used?

A) CHAR = 3 ; VARCHAR = 3

B) CHAR = 50 ; VARCHAR = 3

C) CHAR = 50 ; VARCHAR = 4

D) CHAR = 50 ; VARCHAR = 50

Page 69

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Now that we know how to represent entire records, we must
determine how to store sets of records in blocks.

There are several issues related to storing records in blocks:
1) Separation - how do we separate adjacent records?

2) Spanning - can a record cross a block boundary?

3) Clustering - can a block store multiple record types?

4) Splitting - are records allocated in multiple blocks?

5) Ordering - are the records sorted in any way?

6) Addressing - how do we reference a given record?

Page 70

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Separation

If multiple records are allocated per block, we need to know
when one record ends and another begins.

Record separation is easy if the records are a fixed size
because we can calculate the end of the record from its start.

Variable length records can be separated by:
1) Using a special separator marker in the block.

2) Storing the size of the record at the start of each record.

3) Store the length or offset of each record in the block header.

Page 71

COSC 404 - Dr. Ramon Lawrence

A block header contains the number of records, the location
and size of each record, and a pointer to block free space.

Records can be moved around within a block to keep them
contiguous with no empty space between them and the header
is updated accordingly.

Variable Length Records
Separation and Addressing

Page 72

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Spanning

If records do not exactly fit in a block, we have two choices:
1) Waste the space at the end of each block.

2) Start a record at the end of a block and continue on the next.

Choice #1 is the unspanned option.
Simple because do not have to allocate records across blocks.

Choice #2 is the spanned option.
Each piece must have a pointer to its other part.
Spanning is required if the record size is larger than the block size.

R1 R2 R3 R4 R5

Block 1 Block 2

R1 R2
R3
(a)

R3
(b) R6R5R4 R7

(a)

Block 1 Block 2

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Spanning Example

If the block size is 4096 bytes, the record size is 2050 bytes,
and we have 1,000,000 records:
How many blocks are needed for spanned/unspanned records?

What is the block (space) utilization in both cases?

Answer:
Unspanned
put one record per block implies 1,000,000 blocks

each block is only 2050/4096 * 100% = 50% full (utilization = 50%)

Spanned
all blocks are completely full except the last one

of blocks required = 1,000,000 * 2050 / 4096 = 500,049 blocks

utilization is almost 100%

Page 74

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Clustering

Clustering is allocating records of different types together on
the same block (or same file) because they are frequently
accessed together.

Example:
Consider creating a block where a department record is

allocated together with all employees in the department:

DPT1 EMP1 EMP2 DEPT2 EMP3 EMP4

Block 1

Page 75

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Clustering (2)

If the database commonly processes queries such as:

then the clustering is beneficial because the information about
the employee and department are adjacent in the same block.

However, for queries such as:

clustering is harmful because the system must read in more
blocks, as each block read contains information that is not
needed to answer the query.

select * from employee, department
where employee.deptId = department.Id

select * from employee

select * from department

Page 76

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Split Records

A split record is a record where portions of the record are
allocated on multiple blocks for reasons other than spanning.

Record splitting may be used with or without spanning.

Typically, hybrid records are allocated as split records:
The fixed portion of the record is allocated on one block (with

other fixed record portions).

The variable portion of the record is allocated on another
block (with other variable record portions).

Splitting a record is done for efficiency and simplifying
allocation. The fixed portion of a record is easier to allocate
and optimize for access than the variable portion.

Page 77

COSC 404 - Dr. Ramon Lawrence

R1 (a)

R2 (a)

Storing Records in Blocks
Split Records with Spanning Example

Fixed
Block 1

R2 (b)

R3 (a)

Fixed
Block 2

R1 (b)

R2 (c)

Variable
Block 1

Page 78

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Ordering Records

Ordering (or sequencing) records is when the records in a
file (block) are sorted based on the value of one or more fields.

Sorting records allows some query operations to be performed
faster including searching for keys and performing joins.

Records can either be:
1) physically ordered - the records are allocated in blocks in

sorted order.

2) logically ordered - the records are not physical sorted, but
each record contains a pointer to the next record in the sorted
order.

14

Page 79

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Ordering Records Example

Physical ordering Logical Ordering

R1
Block 1

Block 2

R1

R3

Block 1

R4

R2

Block 2

R2

R3

R4

What are the tradeoffs between the two approaches?
What are the tradeoffs of any ordering versus unordered?

Page 80

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Addressing Records

Addressing records is a method for defining a unique value or
address to reference a particular record.

Records can either be:
1) physically addressed - a record has a physical address

based on the device where it is stored.
A physical disk address may use a sector # or a physical address range

exposed by the device.

2) logically addressed - a record that is logically addressed
has a key value or some other identifier that can be used to
lookup its physical address in a table.
Logical addresses are indirect addresses because they provide a

mechanism for looking up the actual physical addresses. They do not
provide a method for locating the record directly on the device.

E.g. OS provides logical block to physical sector mapping for files.

Page 81

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Addressing Records Tradeoff

There is a tradeoff between physical and logical addressing:
Physical addresses have better performance because the

record can be accessed directly (no lookup cost).

Logical addresses provide more flexibility because records
can be moved on the physical device and only the mapping
table needs to be updated.
The actual records or fields that use the logical address do not have to

be changed.

Easier to move, update, and change records with logical addresses.

Page 82

COSC 404 - Dr. Ramon Lawrence

Pointer Swizzling
When transferring blocks between the disk and memory, we
must be careful when handling pointers in the blocks.

For example:

Pointer swizzling is the process for converting disk pointers to
memory pointers and vice versa when blocks move between
memory and disk.

Memory

Block 1 R1

R3

Block 2

R2

R1

R3

Block 1

R2

Block 2

Disk

Page 83

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Once data has been stored to a file consisting of blocks of
records, the database system will perform operations such as
update and delete to the stored records.

How records are allocated and addressed affects the
performance for update and delete operations.

Page 84

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Record Deletion

When a record is deleted from a block, we have several
options:
1) Reclaim deleted space
Move another record to the location or compress file.

2) Mark deleted space as available for future use

Tradeoffs:
Reclaiming space guarantees smaller files, but may be

expensive especially if the file is ordered.

Marking space as deleted wastes space and introduces
complexities in maintaining a record of the free space available.

15

Page 85

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Issues with Record Deletion

We must also be careful on how to handle references to a
record that has been deleted.
If we re-use the space by storing another record in the same

location, how do we know that the correct record is returned or
indicate the record has been deleted?

Solutions:
1) Track down and update all references to the record.

2) Leave a "tombstone" marker at the original address
indicating record deletion and not overwrite that space.
Tombstone is in the block for physical addressing, in the lookup table for

logical addressing.

3) Allocate a unique record id to every record and every pointer
or reference to a record must indicate the record id desired.
Compare record id of pointer to record id of record at address to verify

correct record is returned. Page 86

COSC 404 - Dr. Ramon Lawrence

Research Question
PostgreSQL VACUUM

Question: What does the VACUUM command do in
PostgreSQL?

A) Cleans up your dirty house for you

B) Deletes records from a given table

C) Reclaims space used by records marked as deleted

D) Removes tables no longer used

Page 87

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Record Insertion

Inserting a record into a file is simple if the file is not ordered.
The record is appended to the end of the file.

If the file is physically ordered, then all records must be shifted
down to perform insert.
Extremely costly operation!

Inserting into a logically ordered file is simpler because the
record can be inserted anywhere there is free space and linked
appropriately.
However, a logically ordered file should be periodically re-

organized to ensure that records with similar key values are in
nearby blocks.

Page 88

COSC 404 - Dr. Ramon Lawrence

Memory and Buffer Management
Memory management involves utilizing buffers, cache, and
various levels of memory in the memory hierarchy to achieve
the best performance.
A database system seeks to minimize the number of block

transfers between the disk and memory.

A buffer is a portion of main memory available to store copies
of disk blocks.

A buffer manager is a subsystem responsible for allocating
buffer space in main memory.

Page 89

COSC 404 - Dr. Ramon Lawrence

Buffer Manager Operations
All read and write operations in the database go through the
buffer manager. It performs the following operations:
read block B – if block B is currently in buffer, return pointer to

it, otherwise allocate space in buffer and read block from disk.

write block B – update block B in buffer with new data.

pin block B – request that B cannot be flushed from buffer

unpin block B – remove pin on block B

output block B – save block B to disk (can either be requested
or done by buffer manager to save space)

Key challenge: How to decide which block to remove from the
buffer if space needs to be found for a new block?

Page 90

COSC 404 - Dr. Ramon Lawrence

Buffer Management
Replacement Strategy

A buffer replacement strategy determine which block should
be removed from the buffer when space is required.
Note: When a block is removed from the buffer, it must be

written to disk if it was modified. and replaced with a new block.

Some common strategies:
Random replacement

Least recently used (LRU)

Most recently used (MRU)

16

Page 91

COSC 404 - Dr. Ramon Lawrence

Buffer Replacement Strategies and
Database Performance

Operating systems typically use least recently used for buffer
replacement with the idea that the past pattern of block
references is a good predictor of future references.

However, database queries have well-defined access patterns
(such as sequential scans), and a database system can use
the information to better predict future references.
LRU can be a bad strategy for certain access patterns involving

repeated scans of data!

Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation.
E.g., The schema is frequently accessed, so it makes sense to

keep schema blocks in the buffer.
Page 92

COSC 404 - Dr. Ramon Lawrence

Research Question
MySQL Buffer Management

Question: What buffer replacement policy does MySQL
InnoDB use?

A) LRU

B) MRU

C) 2Q

Page 93

COSC 404 - Dr. Ramon Lawrence

Column Storage
The previous discussion on storage formats assumed records
were allocated on blocks. For large data warehouses, it is
more efficient to allocate data at the column level.

Each file represents all the data for a column. A file entry
contains the column value and a record id. Records are rebuilt
by combining columns using the record id.

The column format reduces the amount of data retrieved from
disk (as most queries do not need all columns) and allows for
better compression.

Page 94

COSC 404 - Dr. Ramon Lawrence

Research Question
PostgreSQL Column Layout

Question: Does PostgreSQL support column layout?

A) Yes

B) No

Page 95

COSC 404 - Dr. Ramon Lawrence

Issues in Disk Organizations
There are many ways to organize information on a disk.
There is no one correct way.

The "best" disk organization will be determined by a variety of
factors such as: flexibility, complexity, space utilization, and
performance.

Performance measures to evaluate a given strategy include:
space utilization

expected times to search for a record given a key, search for
the next record, insert/append/delete/update records,
reorganize the file, read the entire file.

Key terms:
Storage structure is a particular organization of data.

Access mechanism is an algorithm for manipulating the data
in a storage structure. Page 96

COSC 404 - Dr. Ramon Lawrence

Summary
hard drives, RAID (formulas)
sequential/random accessStorage and

Organization Fields

Records

Blocks

Files

Memory

Database

Hardware

representing types in memory

variable/fixed format/length
schemas

separation, spanning, splitting,
clustering, ordering, addressing

insert, delete operations on
various organizations

buffer management
pointer swizzling

disk organization choices

17

Page 97

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Perform device calculations such as computing transfer times.

Explain the differences between fixed and variable schemas.

List and briefly explain the six record placement issues in
blocks.

Major Theme:
There is no single correct organization of data on disk. The

"best" disk organization will be determined by a variety of
factors such as: flexibility, complexity, space utilization, and
performance.

Page 98

COSC 404 - Dr. Ramon Lawrence

Objectives
Compare/contrast volatile versus non-volatile memory.

Compare/contrast random access versus sequential access.

Perform conversion from bytes to KB to MB to GB.

Define terms from hard drives: arm assembly, arm, read-write
head, platter, spindle, track, cylinder, sector, disk controller

Calculate disk performance measures - capacity, access time
(seek,latency,transfer time), data transfer rate, mean time to
failure.

Explain difference between sectors (physical) & blocks (logical).

Perform hard drive and device calculations.

List the benefits of RAID and common RAID levels.

Explain issues in representing floating point numbers.

Page 99

COSC 404 - Dr. Ramon Lawrence

Objectives (2)
List different ways for representing strings in memory.

List different ways for representing date/times in memory.

Explain the difference between fixed and variable length records.

Compare/contrast the ways of separating fields in a record.

Define and explain the role of schemas.

Compare/contrast variable and fixed formats.

List and briefly explain the six record placement issues in blocks.

Explain the tradeoffs for physical/logical ordering and
addressing.

List the methods for handling record insertion/deletion in a file.

List some buffer replacement strategies.

Explain the need for pointer swizzling.

Define storage structure and access mechanism.

