
1

COSC 404
Database System Implementation

B-trees

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

B-Trees and Indexing
Overview

We have seen how multi-level indexes can improve search
performance.

One of the challenges in creating multi-level indexes is
maintaining the index in the presence of inserts and deletes.

We will learn B+-trees which are the most common form of
index used in database systems today.

Page 3

COSC 404 - Dr. Ramon Lawrence

B-trees
Introduction
A B-tree is a search tree where each node has >= n data values

and <= 2n, where we chose n for our particular tree.
Each key in a node is stored in a sorted array.
key[0] is the first key, key[1] is the second key,…,key[2n-1] is the 2nth key

key[0] < key[1] < key[2] < … < key[2n-1]

There is also an array of pointers to children nodes:
child[0], child[1], child[2], …, child[2n]

Recursive definition: Each subtree pointed to by child[i] is also a B-tree.

For any key[i]:
1) key[i] > all entries in subtree pointed to by child[i]

2) key[i] <= all entries in subtree pointed to by child[i+1]

A node may not contain all key values.
of children = # of keys +1

A B-tree is balanced as every leaf has the same depth. Page 4

COSC 404 - Dr. Ramon Lawrence

B-trees
Order Debate

There is an interesting debate on how to define an order of a
B-tree. The original definition was the one given:
The order n is the minimum # of keys in a node. The

maximum number is 2n.

However, may want to have a B-tree where the maximum # of
keys in a node is odd.
This is not possible by the above definition.

Consequently, can define order as the maximum # of keys in a
node (instead of the minimum).
Further, some use maximum # of pointers instead of keys.

Bottom line: B-trees with an odd maximum # of keys will be
avoided in the class.
The minimum # of nodes for an odd maximum n will be n/2 .

Page 5

COSC 404 - Dr. Ramon Lawrence

B-trees Example
Programming View

16 21 ... 24

15 25 ... 90

81 85 ... 89

1 10 ... 14 91 95 ... 99

26 40 ... 60

Page 6

COSC 404 - Dr. Ramon Lawrence

B-Trees Performance
Question: A B-tree has a maximum of 10 keys per node.
What is the maximum number of children for a given node?

A) 0

B) 1

C) 10

D) 11

E) 20

2

Page 7

COSC 404 - Dr. Ramon Lawrence

2-3 Trees
Introduction

A 2-3 tree is a B-tree where each node has either 1 or 2 data
values and 2 or 3 children pointers.
It is a special case of a B-tree.

Fact:
A 2-3 tree of height h always has at least as many nodes as a

full binary tree of height h.
That is, a 2-3 tree will always have at least 2h-1 nodes.

Page 8

COSC 404 - Dr. Ramon Lawrence

2-3 Search Tree
Example

50 90

70 93 9820

60

80

10

30 40

91 92

95 96

99

Conceptual View

Page 9

COSC 404 - Dr. Ramon Lawrence

2-3 Tree Example
Programming View

50 90

7020

10

30 40

60

80

9991 92

95 96

93 98

Page 10

COSC 404 - Dr. Ramon Lawrence

Searching a 2-3 Tree
Searching a 2-3 tree is similar to searching a binary search tree.

Algorithm:
Start at the root which begins as the curNode.

If curNode contains the search key we are done, and have found
the search key we were looking for.

A 2-node contains one key:
If search key < key[0], go left (child[0]) otherwise go right (child[1])

A 3-node contains two key values:
If search key < key[0], go left with first child pointer (child[0])

else if search key < key[1] go down middle child pointer (child[1])

else (search key >= key[1]) go right with last child pointer (child[2])

If we encounter a NULL pointer, then we are done and the
search failed.

Page 11

COSC 404 - Dr. Ramon Lawrence

Searching a 2-3 Tree
Example #1

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Find 34

37 50

30 35

33 34

Page 12

COSC 404 - Dr. Ramon Lawrence

Searching a 2-3 Tree
Example #2

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Find 82

70 90

80

37 50

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Insertion into a 2-3 Tree
Algorithm:
Find the leaf node where the new key belongs.

This insertion node will contain either a single key or two keys.

If the node contains 1 key, insert the new key in the node (in
the correct sorted order).

If the node contains 2 keys:
Insert the node in the correct sorted order.

The node now contains 3 keys (overflow).

Take the middle key and promote it to its parent node. (split node)

If the parent node now has more than 3 keys, repeat the procedure by
promoting the middle node to its parent node.

This promotion procedure continues until:
Some ancestor has only one node, so overflow does not occur.

All ancestors are “full” in which case the current root node is split into two
nodes and the tree “grows” by one level. Page 14

COSC 404 - Dr. Ramon Lawrence

Insertion into a 2-3 Tree
Splitting Algorithm

Splitting Algorithm:
Given a node with overflow (more than 2 keys in this case), we

split the node into two nodes each having a single key.

The middle value (in this case key[1]) is passed up to the
parent of the node.
This, of course, requires parent pointers in the 2-3 tree.

This process continues until we find a node with sufficient room
to accommodate the node that is being percolated up.

If we reach the root and find it has 2 keys, then we split it and
create a new root consisting of the “middle” node.

The splitting process can be done in logarithmic time since we
split at most one node per level of the tree and the depth of the
tree is logarithmic in the number of nodes in the tree.
Thus, 2-3 trees provide an efficient height balanced tree.

Page 15

COSC 404 - Dr. Ramon Lawrence

Insert 39

70 90

50

30

80 100604010 20

Insertion Examples

Page 16

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 39 40

Done!

Page 17

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 39 40

Insert 38

Page 18

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 38 39 40

Insert 38

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 38 39 40

Push up, split apart

Page 20

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

38 40

Done!

Page 21

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

38 40

Insert 37

Page 22

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

40

Done!

37 38

Page 23

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

4037 38

Insert 36

Page 24

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

40

Insert 36

36 37 38

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

4036 37 38

Push up, split apart

Page 26

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20 40

30 37 39

Need to go further up the tree to resolve overcrowding

36 38

Page 27

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20 40

30 37 39

36 38

Push up, split apart

Page 28

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20 36

37 50

3930

4038

Done!

Page 29

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20 36

37 50

3930

4038

Insert 35

Page 30

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

4038

Insert 35

35 36

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

4038

Insert 34

35 36

Page 32

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

4038

Insert 34

34 35 36

Page 33

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

403834 35 36

Push up, split apart

Page 34

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

Done!

30 35

36

34

Page 35

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

34

Insert 33

Page 36

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Done!

7

Page 37

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Insert 32

Page 38

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

Insert 32

32 33 34

Page 39

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

32 33 34

Push up, split apart

Page 40

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

403836

30 33 35

32 34

Push up, split apart

Page 41

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 10060

33 37 50

39

4038

Push up, split apart

3530

10 20 32

34 36

Page 42

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

33

3530

A new level is born!

37

50

39 70 90

10 20 32

34 36

38 40

60 80 100

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Insertion Special Cases
There are 3 cases of splitting for insertion:
1) Splitting a leaf node
Promote middle key to parent and create two new nodes containing half

the keys.

Do not have child pointers to worry about.

2) Splitting an interior node
Promote middle key to parent and create two new nodes containing half

the keys.

Make sure child pointers are copied over as well as keys.

3) Splitting the root node
Similar to splitting an interior node, but now the tree will grow by one

level and will have a new root node (must update root pointer).

Case 2 is ONLY possible if a leaf node has been previously
split. Case 3 is only possible if all ancestors of the leaf node
had to be split.

Page 44

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting a Leaf Node

Leaf node overflow

P

S M L

Page 45

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting a Leaf Node (2)

Splitting a leaf node

P

LS

M

Page 46

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting an Interior Node

Splitting an internal node

S M L

A DCB

P

Interior node overflow

Page 47

COSC 404 - Dr. Ramon Lawrence

Special Case:
Splitting an Interior Node (2)

Splitting an internal node

A DCB

P’s Parent

S L

M
P1 P2

Page 48

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting the Root Node

Splitting the root node

S M L

A DCB

Root

Height h

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting the Root Node (2)

Height h+1

A DCB

New Root

S L

M

Page 50

COSC 404 - Dr. Ramon Lawrence

B-tree Insertion Practice Question
For a B-tree of order 1 (max. keys=2), insert the following
keys in order:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

Page 51

COSC 404 - Dr. Ramon Lawrence

Deletion From a 2-3 Tree
Algorithm:
To delete a key K, first locate the node N containing K.
If K is not found, then deletion algorithm terminates.

If N is an interior node, find K’s in-order successor and swap it
with K. As a result, deletion always begins at a leaf node L.

If leaf node L contains a value in addition to K, delete K from L,
and we’re done. (no underflow)
For B-trees, underflow occurs if # of nodes < minimum.

If underflow occurs (node has less than required # of keys), we
merge it with its neighboring nodes.
Check siblings of leaf. If sibling has two values, redistribute them.

Otherwise, merge L with an adjacent sibling and bring down a value from
L’s parent.

If L’s parent has underflow, recursively apply merge procedure.

If underflow occurs to the root, the tree may shrink a level. Page 52

COSC 404 - Dr. Ramon Lawrence

AB

C

L
A

B

L
C

Deletion
Re-distributing values in Leaf Nodes

If deleting K from L causes L to be empty:
Check siblings of now empty leaf.

If sibling has two values, redistribute the values.

Page 53

COSC 404 - Dr. Ramon Lawrence

Merging leaf nodes:
If no sibling node has extra keys to spare, merge L with an

adjacent sibling and bring down a value from L’s parent.

The merging of L may cause the parent to be left without a
value and only one child. If so, recursively apply deletion
procedure to the parent.

A

B

L
AB

L

Deletion
Merging Leaf Nodes

Page 54

COSC 404 - Dr. Ramon Lawrence

C

A B

w x y z

B

A C

x zyw

Deletion
Re-distributing values in Interior Nodes

Re-distributing values in interior nodes:
If the node has a sibling with two values, redistribute the values.

10

Page 55

COSC 404 - Dr. Ramon Lawrence

B

A

x y z

A B

zyx

Deletion
Merging Interior Nodes

Merging interior nodes:
If the node has no sibling with two values, merge the node with

a sibling, and let the sibling adopt the node’s child.

Page 56

COSC 404 - Dr. Ramon Lawrence

A B

zyx

A B

zyx

Deletion
Merging on the Root Node

If the merging continues so that the root of the tree is without a
value (and has only one child), delete the root. Height will now
be h-1.

Page 57

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Original tree

50

60 80 100

70 90

10 20

Page 58

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

Delete 70

30

40

50

60 80 100

70 90

10 20

Page 59

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Swap with in-order successor

50

60 70 100

80 90

10 20

Page 60

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Merge and pull down

50

60 100

80 90

10 20

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Done!

50

10010 20 60 80

90

Page 62

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Delete 100

50

10010 20 60 80

90

Page 63

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Redistribute

50

10 20 60 80

90

Page 64

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Done!

50

10 20

80

9060

Page 65

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Delete 80

50

10 20

80

9060

Page 66

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

50

10 20

90

8060

Swap with in-order successor

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

50

10 20

90

60

Merge and pull down

Page 68

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

50

10 20

Merge and pull down

60 90

Page 69

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

4010 20

Merge and pull down

60 90

30 50

Page 70

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

Done

4010 20 60 90

30 50

Page 71

COSC 404 - Dr. Ramon Lawrence

B-tree Deletion Practice Question
Using the previous tree constructed by inserting into a B-tree of
order 1 (max. keys=2) the keys:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

Delete these keys (in order):
40

70

80

Page 72

COSC 404 - Dr. Ramon Lawrence

B-trees as External Data Structures
Now that we understand how a B-tree works as a data
structure, we will investigate how it can be used for an index.

A regular B-tree can be used as an index by:
Each node in the B-tree stores not only keys, but also a record

pointer for each key to the actual data being stored.
Could also potentially store the record in the B-tree node itself.

To find the data you want, search the B-tree using the key, and
then use the pointer to retrieve the data.
No additional disk access is required if the record is stored in the node.

Given this description, it is natural to wonder how we might
calculate the best B-tree order.
Depends on disk block and record size.

We want a node to occupy an entire block.

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Calculating the Size of a B-tree Node
Given a block of 4096 bytes, calculate the order of a B-tree if
the key size is 4 bytes, the pointer to the data record is 8 bytes,
and the child pointers are 8 bytes.

Answer:
Assuming no header information is kept in blocks:

node size = keySize*numKeys + dataPtrSize*numKeys

+ childPtrSize*(numKeys+1)

Let k=numKeys.

size of one node = 4*k + 8*k + 8*(k+1) <= 4096

k = 204 keys

Maximum order is 102.

Page 74

COSC 404 - Dr. Ramon Lawrence

B-tree Question
Question: Given a block of 4096 bytes, calculate the maximum
number of keys in a node if the key size is 4 bytes, internal B-
tree pointers are 8 bytes, and we store the record itself in the
B-tree node instead of a pointer. The record size is 100 bytes.

A) 18

B) 36

C) 340

D) 680

Page 75

COSC 404 - Dr. Ramon Lawrence

Advantages of B-trees
The advantages of a B-tree are:
1) B-trees automatically create or destroy index levels as the

data file changes.

2) B-trees automatically manage record allocation to blocks, so
no overflow blocks are needed.

3) A B-tree is always balanced, so the search time is the same
for any search key and is logarithmic.

For these reasons, B-trees and B+-trees are the index scheme
of choice for commercial databases.

Page 76

COSC 404 - Dr. Ramon Lawrence

B+-trees
A B+-tree is a multi-level index structure like a B-tree except
that all data is stored at the leaf nodes of the resulting tree
instead of within the tree itself.
Each leaf node contains a pointer to the next leaf node which

makes it easy to chain together and maintain the data records
in “sequential” order for sequential processing.

Thus, a B+-tree has two distinct node types:
1) interior nodes - store pointers to other interior nodes or leaf

nodes.

2) leaf nodes - store keys and pointers to the data records (or
the data records themselves).

Page 77

COSC 404 - Dr. Ramon Lawrence

B+-tree Example

Record Pointers

50

10 30 70 90

4 8 90 9910 22 30 45 50 69 70 89

Page 78

COSC 404 - Dr. Ramon Lawrence

Operations on B+-trees
The general algorithms for inserting and deleting from a B+-
tree are similar to B-trees except for one important difference:

All key values stay in leaves.

When we must merge nodes for deletion or add nodes during
splitting, the key values removed/promoted to the parent nodes
from leaves are copies.
All non-leaf levels do not store actual data, they are simply a

hierarchy of multi-level index to the data.

14

Page 79

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example

50

10 30 70 90

4 8 90 9910 22 30 45 50 69 70 89

Insert 75

Page 80

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example (2)

50

10 30 70 90

4 8 90 9910 22 30 45 50 69

75 goes in 2nd last block.
Split block to handle overflow.
Promote 75. Note that 75 stays in a leaf!

75 8970

Page 81

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example (3)

50

10 30

4 8 90 9910 22 30 45 50 69

Split parent block to handle overflow.
Promote 75. Note that 75 does not stay!

75 89

7570 90

70

Page 82

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example (4)

50 75

10 30

4 8 90 9910 22 30 45 50 69

Insertion done!

75 89

70 90

70

Page 83

COSC 404 - Dr. Ramon Lawrence

B+-tree Delete Example

50 75

10 30

4 8 90 9910 22 30 45 50 69

Delete 75.

75 89

70 90

70

Page 84

COSC 404 - Dr. Ramon Lawrence

B+-tree Delete Example (2)

50 75

10 30

4 8 90 9910 22 30 45 50 69

Remove from leaf node.
No other updates.

70 90

8970

15

Page 85

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 2

50 75

10 30

4 8 90 9910 22 30 45 50 69

70

Delete 89.

70 90

89

Page 86

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 2 (2)

50 75

10 30

4 8 10 22 30 45 50 69

70

Redistribute keys 90 and 99.

70 99

90

99

Page 87

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3

50 75

10 30

4 8 10 22 30 45 50 69

70

Delete 90.

70 99

90

99

Page 88

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3 (2)

50 75

10 30

4 8 10 22 30 45 50 69

70

Empty leaf node. Merge with sibling.

70 99

99

Page 89

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3 (2)

50 75

10 30

4 8 10 22 30 45 50 69

Empty interior node. Merge with sibling.

70

Merge

70

99

Page 90

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3 (3)

10 30

4 8 10 22 30 45 50 69

Bring down 75 from parent node. Done.

70 75

50

70 99

16

Page 91

COSC 404 - Dr. Ramon Lawrence

B+-tree Practice Question
For a B+-tree of order 2 (max. keys=4), insert the following
keys in order:
10, 20, 30, 40, 50, 60, 70, 80, 90

Assuming keys increasing by 10, what is the first key added
that causes the B+-tree to grow to height 3?
a) 110 b) 120 c) 130 d) 140 e) 150

Show the tree after deleting the following keys:
a) 70

b) 90

c) 10

Assume you start with the tree after inserting 90 above.

Page 92

COSC 404 - Dr. Ramon Lawrence

B+-tree Challenge Exercise
For a B+-tree with maximum keys=3, insert the following keys
in order:
10, 20, 30, 40, 50, 60, 70, 80, 90,100

Show the tree after deleting the following keys:
a) 70

b) 90

c) 10

Try the deletes when the minimum # of keys is 1 and when the
minimum # of keys is 2.

Page 93

COSC 404 - Dr. Ramon Lawrence

Observations about B+-trees
Since the inter-node connections are done by pointers, there is
no assumption that in the B+-tree, the “logically” close blocks
are “physically” close.

The B+-tree contains a relatively small number of levels
(logarithmic in the size of the main file), thus searches and
modifications can be conducted efficiently.

Example:
If a B+-tree node can store 300 key-pointer pairs at maximum,

and on average is 69% full, then 208 (207+1) pointers/block.

Level 3 B+-tree can index 2083 records = 8,998,912 records!

Page 94

COSC 404 - Dr. Ramon Lawrence

B+-trees Discussion
By isolating the data records in the leaves, we also introduce
additional implementation complexity because the leaf and
interior nodes have different structures.
Interior nodes contain only pointers to additional index nodes or

leaf nodes while leaf nodes contain pointers to data records.

This additional complexity is outweighed by the advantages of
B+-trees which include:
Better sequential access ability.

Greater overall storage capacity for a given block size since the
interior nodes can hold more pointers each of which requires
less space.

Uniform data access times.

Page 95

COSC 404 - Dr. Ramon Lawrence

B-trees
Summary

A B-tree is a search tree where each node has >= n data
values and <= 2n, where we chose n for our particular tree.
A 2-3 tree is a special case of a B-tree.

Common operations: search, insert, delete
Insertion may cause node overflow that is handled by promotion.

Deletion may cause node underflow that is handled by mergers.

Handling special cases for insertion and deletion make the
code for implementing B-trees complex.

Note difference between B+-tree and B-tree for insert/delete!

B+-trees are a good index structure because they can be
searched/updated in logarithmic time, manage record pointer
allocation on blocks, and support sequential access.

Page 96

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Insert and delete from a B-tree and a B+-tree.

Calculate the maximum order of a B-tree.

Major Theme:
B-trees are the standard index method due to their time/space

efficiency and logarithmic time for insertions/deletions.

Other objectives:
Calculate query access times using B-trees indexes.

Compare/contrast B-trees and B+-trees.

