
1

COSC 404
Database System Implementation

R-trees

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

R-Trees Introduction
R-trees (or region tree) is a generalized B-tree suitable for
processing spatial queries. Unlike B-trees where the keys have
only one dimension, R-trees can handle multidimensional data.

The basic R-tree was proposed by Guttman in 1984 and
extensions and modifications have been later developed.
R+-tree (Sellis et al. 1987)

R*-tree (Beckmann et al. 1990)

We begin by looking at the properties of spatial data and spatial
query processing.

Page 3

COSC 404 - Dr. Ramon Lawrence

Types of Spatial Data
Spatial data includes multidimensional points, lines, rectangles,
and other geometric objects.

A spatial data object occupies a region of space, called its
spatial extent, which is defined by its location and boundary.

Point Data - points in multidimensional space

Region Data - objects occupy a region (spatial extent) with a
location and a boundary.

Page 4

COSC 404 - Dr. Ramon Lawrence

Types of Spatial Queries
Spatial Range Queries - query has associated region and asks
to find matches within that region
e.g. Find all cities within 50 miles of Kelowna.

Answer to query may include overlapping or contained regions.

Nearest Neighbor Queries - find closest region to a region.
e.g. Find the 5 closest cities to Kelowna.

Results are ordered by proximity (distance from given region).

Spatial Join Queries - join two types of regions
e.g. Find all cities near a lake.

Expensive to compute as join condition involves regions and
proximity.

Page 5

COSC 404 - Dr. Ramon Lawrence

Spatial Data Applications
Geographic Information Systems (GIS) use spatial data for
modeling cities, roads, buildings, and terrain.

Computer-aided design and manufacturing (CAD/CAM)
process spatial objects when designing systems.
Spatial constraints: "There must be at least 6 inches between

the light switch and turn signal."

Multimedia databases storing images, text, and video require
spatial data management to answer queries like "Return the
images similar to this one." Involves use of feature vectors.
Similarity query converted into nearest neighbor query.

Page 6

COSC 404 - Dr. Ramon Lawrence

Spatial Queries
Question: What type of spatial query is: "Find the city with the
largest population closest to Chicago?"

A) Spatial Range Query

B) Nearest Neighbor Query

C) Spatial Join Query

D) Not a spatial query

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Spatial Indexing
A multidimensional or spatial index utilizes some kind of spatial
relationship to organize data entries. Each key value in the
index is a point (or region) in k-dimensional space, where k is
the number of fields in the search key.

Although multidimensions (multiple key fields) can be handled
in a B+-tree, this is accomplished by imposing a total ordering
on the data as B+-trees are single-dimensional indexes.

For instance, B+-tree index on <x,y> would sort the points by x
then by y.
I.e. <2,70>, <3,10>, <3,20>, <4,60>

Page 8

COSC 404 - Dr. Ramon Lawrence

B+-tree versus R-tree

80
70
60
50
40
30
20
10
0
0 1 2 3 4

B+-tree

80
70
60
50
40
30
20
10
0
0 1 2 3 4

R-tree

3,10 3,20

3,20 4,702,80 3,10

R1

R2

R1 R2

3,10 3,20 2,70 4,60

R1=(3,10)-(3,20)
R2=(2,60)-(4,80)

Page 9

COSC 404 - Dr. Ramon Lawrence

B+-tree versus R-tree Querying
Consider these three queries on x and y:
1) Return all points with x < 3.
Works well on B+-tree and R-tree. Most efficient on B+-tree.

2) Return all points with y < 50.
Cannot be efficiently processed with B+-tree as data sorted on x first.

Can be efficiently processed on R+-tree.

3) Return all points with x < 3 and y < 50.
B+-tree is only useful for selection on x. Not very good if many points

satisfy this criteria.

Efficient for R-tree as only search regions that may contain points that
satisfy both criteria.

Page 10

COSC 404 - Dr. Ramon Lawrence

R-Tree Structure
R-tree is adaptation of B+-tree to handle spatial data.

The search key for an R tree is a collection of intervals with one
interval per dimension. Search keys are referred to as
bounding boxes or minimum bounding rectangles (MBRs).
Example:

Each entry in a node consists of a pair <n-dimensional box, id>
where the id identifies the object and the box is its MBR.

Data entries are stored in leaf nodes and non-leaf nodes contain
entries consisting of <n-dimensional box, node pointer>.

The box at a non-leaf node is the smallest box that contains all
the boxes associated with the child nodes.

Page 11

COSC 404 - Dr. Ramon Lawrence

R-Tree Notes
The bounding box for two children of a given node can overlap.
Thus, more than one leaf node could potentially store a given

data region.

A data point (region) is only stored in one leaf node.

Page 12

COSC 404 - Dr. Ramon Lawrence

R-Tree Searching
Start at the root.
If current node is non-leaf, for each entry <E, ptr> if box E

overlaps Q, search subtree identified by ptr.

If current node is leaf, for each entry <E, id>, if E overlaps Q, id
identifies an object that might overlap Q.

Note that you may have to search several subtrees at each
node. In comparison, a B-tree equality search goes to just one
leaf.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

R-Tree Searching Improvements
Although it is more convenient to store boxes to represent
regions because they can be represented compactly, it is
possible to get more precise bounding regions by using convex
polygons.

Although testing overlap is more complicated and slower, this is
done in main-memory so it can be done quite efficiently. This
often leads to an improvement.

Page 14

COSC 404 - Dr. Ramon Lawrence

R-Tree Insertion Algorithm
Start at root and go down to "best-fit" leaf L.
Go to child whose box needs least enlargement to cover B;

resolve ties by going to smallest area child.

If best-fit leaf L has space, insert entry and stop.

Otherwise, split L into L1 and L2.
Adjust entry for L in its parent so that the box now covers (only)

L1.

Add an entry (in the parent node of L) for L2. (This could cause
the parent node to recursively split.)

Page 15

COSC 404 - Dr. Ramon Lawrence

R-Tree Insertion Algorithm
Splitting a Node

The existing entries in node L plus the newly inserted entry
must be distributed between L1 and L2.

Goal is to reduce likelihood of both L1 and L2 being searched
on subsequent queries.

Idea: Redistribute so as to minimize area of L1 plus area of L2.

An exhaustive search of possibilities is too slow so quadratic
and linear heuristics are used.

Page 16

COSC 404 - Dr. Ramon Lawrence

Insertion Example

R-tree degree=3

R1 R2

A B C D

R1 R2

A B C D E

New R-tree

E

Extended region R2 to hold E.

Spatial Data

A

BC

D

R1

R2

Insert E

A

BC

R1 DR2

Page 17

COSC 404 - Dr. Ramon Lawrence

Insertion Example 2

R1 R2

A B C D E

Original R-treeInsert X

X

New R-tree

R1 R3 R2

D E A C B X

A

BC

D
E

R1

R2

Updated Regions

A

BC

D
EX
R2

R3

R1

Split R1 into R1 and R3.
Page 18

COSC 404 - Dr. Ramon Lawrence

R+-Tree
R+-tree avoids overlap by inserting an object into multiple
leaves if necessary.

Reduces search cost as now take a single path to leaf.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

R*-Tree
R*-tree uses the concept of forced reinserts to reduce overlap
in tree nodes.

When a node overflows, instead of splitting:
Remove some (say 30%) of the entries and reinsert them into

the tree.

Could result in all reinserted entries fitting on some existing
pages, avoiding a split.

R*-trees also use a different heuristic, minimizing box
parameters, rather than box areas during insertion.

Page 20

COSC 404 - Dr. Ramon Lawrence

GiST
The Generalized Search Tree (GiST) abstracts the "tree"
nature of a class of index including B+-trees and R-tree
variants.
Striking similarities in insert/delete/search and even

concurrency control algorithms make it possible to provide
"templates" for these algorithms that can be customized to
obtain the many different tree index structures.

B+ trees are so important (and simple enough to allow further
specialization) that they are implemented specifically in all
DBMSs.

GiST provides an alternative for implementing other index
types.

Implemented in PostgreSQL. Make your own index!

Page 21

COSC 404 - Dr. Ramon Lawrence

R-Tree Variants
Question: Select a true statement.

A) Searching in a R-tree always follows a single path.

B) R-tree variants may have different ways for splitting nodes
during insertion.

C) A R+-tree search always follows a single path to a leaf
node.

D) None of the above

Page 22

COSC 404 - Dr. Ramon Lawrence

R-Trees Summary
An R-tree is useful for indexing and searching spatial data.

Variants of R-trees are used in commercial databases.

Page 23

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Thing":
Be able to explain the difference between an R-tree and a B+-

tree.

Other objectives:
List some types of spatial data.

List some types of spatial queries.

List some applications of spatial data and queries.

Understand the idea of insertion in a R-tree.

