
1

COSC 404
Database System Implementation

SQL Indexing

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in SQL
There are two general ways of creating an index:
1) By specifying it in your CREATE TABLE statement:

2) Using a CREATE INDEX command after a table is created:

CREATE TABLE test
(a int,

b int,
c varchar(10)
PRIMARY KEY (a),
UNIQUE (b),
INDEX (c)

);

CREATE INDEX myIdxName ON test (a,b);

Only one primary key index allowed.

UNIQUE index does not allow duplicate keys.

Creates an index that supports duplicates.

Page 3

COSC 404 - Dr. Ramon Lawrence

CREATE INDEX Command
CREATE INDEX syntax:

UNIQUE means that each value in the index is unique.

ASC/DESC specifies the sorted order of index.

Note: The syntax varies slightly between systems.

CREATE [UNIQUE] INDEX indexName
ON tableName (colName [ASC|DESC] [,...])

DROP INDEX indexName;

Page 4

COSC 404 - Dr. Ramon Lawrence

CREATE INDEX Command
Examples

Examples:
CREATE UNIQUE INDEX idxStudent ON Student(sid)

Creates an index on the field sid in the table Student

idxStudent is the name of the index.

The UNIQUE keyword ensures the uniqueness of sid values in
the table (and index).
Uniqueness is enforced even when adding an index to a table with

existing data. If the sid field is non-unique then the index creation fails.

CREATE INDEX clMajor ON Student(Major) CLUSTER

Creates a clustered (primary) index on the Major field of
Student table.

Note: Clustered index may or may not be on a key field.

Page 5

COSC 404 - Dr. Ramon Lawrence

CREATE INDEX Command
Examples (2)

CREATE INDEX idxMajorYear ON student(Major,Year)

Creates an index with two fields.

Duplicate search keys are possible.

Page 6

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in MySQL
MySQL supports both ways of creating indexes. The CREATE
INDEX command is mapped to an ALTER TABLE statement.

Syntax for CREATE TABLE:
CREATE TABLE tbl_Name
(

[CONSTRAINT [name]] PRIMARY KEY [index_type] (index_col,...)
| KEY [index_name] [index_type] (index_col,...)
| INDEX [index_name] [index_type] (index_col,...)
| [CONSTRAINT [symbol]] UNIQUE [INDEX]

[index_name] [index_type] (index_col,...)
| [FULLTEXT|SPATIAL] [INDEX] [index_name] (index_col,...)
| [CONSTRAINT [symbol]] FOREIGN KEY

[index_name] (index_col_name,...)
...

)

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in MySQL (2)
Notes:
1) By specifying a primary key, an index is automatically

created by MySQL. You do not have to create another one!

2) The primary key index (and any other type of index) can
have more than one attribute.

3) MySQL assigns default names to indexes if you do not
provide them.

4) MySQL supports B+-tree, Hash, and R-tree indexes but
support depends on table type.

5) Can index only the first few characters of a CHAR/VARCHAR
field by using col_name(length) syntax. (smaller index size)

6) FULLTEXT indexes allow more powerful natural language
searching on text fields (but have a performance penalty).

7) SPATIAL indexes can index spatial data.
Page 8

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in SQL Server
Microsoft SQL Server supports defining indexes in the CREATE
TABLE statement or using a CREATE INDEX command.

Notes:
1) The primary index is a cluster index (rows sorted and stored

by indexed column). Unique indexes are non-clustered.
A clustered (primary) index stores the records in the index.

A secondary index stores pointers to the records in the index.

Clustered indexes use B+-trees.

2) A primary key constraint auto-creates a clustered index.

2) Also supports full-text and spatial indexing.

Page 9

COSC 404 - Dr. Ramon Lawrence

Performance Improvement of Indexes
Indexes can improve query performance, especially when
indexing foreign keys and for queries with low selectivity.

Experiment:
Use TPC-H database and perform join between Orders and Customer

where the o_custkey field in Orders table is and is not indexed.

select * from orders o, customers c where o.o_custkey = c.c_custkey
 Result size = 1,500,000 rows in time 40 seconds

add condition: where o_custkey = 10
 # of rows = 20, without index = 7 seconds ; with index = less than a second

add condition: where o_custkey < 100
 # of rows = 979; without index = 7 seconds; with index = less than a second

add condition: where o_custkey < 1000
 What do you think will be faster a) with or b) without an index?

Bottom line: Indexes improve performance but only for queries
that have low selectivity (get return rows from index).

Page 10

COSC 404 - Dr. Ramon Lawrence

Indexing with Multiple Fields
Consider an index with multiple fields:

and a query that could use this index:

Commercial databases use a B+-tree index. Note order is
important as the index is sorted on the attributes in order.

There are also other methods for multiple field indexing:
Partitioned Hashing

Grid Files

CREATE INDEX idxMajorYear ON student(Major,Year)

SELECT * FROM student WHERE Major="CS" and Year="3"

Page 11

COSC 404 - Dr. Ramon Lawrence

Multiple Key Indexing
Grid Files

A grid file is designed for multiple search-key queries.
The grid file has a grid array and a linear scale for each search-

key attribute.

The grid array has a number of dimensions equal to number of
search-key attributes.

Each cell of the grid points to a disk bucket. Multiple cells of
the grid array can point to the same bucket.

To find the bucket for a search-key value, locate the row and
column of its cell using the linear scales and follow pointer.

If a bucket becomes full, a new bucket can be created if more
than one cell points to it. If only one cell points to it, an overflow
bucket needs to be created.

Page 12

COSC 404 - Dr. Ramon Lawrence

Example Grid File for Student Database

grid index

Major

Year
1 2 3 4

BA

BS

CS

ME

BA,1-4
BS-CS,3-4

ME,3-4BS-CS-ME, 1-2

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Grid Files Querying
A grid file on two attributes A and B can answer queries:
Exact match queries:
A=value

B=value

A=value AND B=value

Range queries:
(a1  A  a2)

(b1  B  b2)

(a1  A  a2  b1  B  b2)

For example, to answer (a1  A  a2  b1  B  b2), use linear
scales to find candidate grid array cells, and look up all the
buckets pointed to from those cells.

Linear scales must be chosen to uniformly distribute records
across cells. Otherwise there will be many overflow buckets.

Page 14

COSC 404 - Dr. Ramon Lawrence

Grid Files Discussion
Using grid cells as bucket pointers allows the grid to be regular,
but increases the indirection.

Note that the linear scales are often allocated in a table where
each value maps to a number between 0 and N.

This allows easier indexing of the grid, and also permits the
linear scales to be ranges. Example:

Overall: Grid files are good for multi-key searches but require
space overhead and ranges that evenly split keys.

Salary Linear Scale

Page 15

COSC 404 - Dr. Ramon Lawrence

Multiple Key Indexing
Partitioned Hashing

The idea behind partitioned hashing is that the overall hash
location is a combination of the hash values from each key.

For example,

h1 h2

010110 111010

Key 1 Key 2

Hash Location

The overall hash location L is 12 bits long.
The first 6 bits are from h1, the second 6 from h2.

Page 16

COSC 404 - Dr. Ramon Lawrence

111

000
001
010
011
100
101
110

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

10567,15973

Partitioned Hashing Example

Hash Table

Insert
<10567,CS,3>, <11589,BA,2>, <15973,CS,3>,
<29579,BS,1>,<34596,ME,4>, <75623,BA,3>,
<84920,CS,4>, <96256,ME,2>

11589
29579

75623

96256

34596,84920

Page 17

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Example
Searching

Find Major="CS" AND Year="3"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256

34596,84920

Page 18

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Example
Searching (2)

Find Year="2"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256

34596,84920

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Example
Searching (3)

Find Major="BA"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256

34596,84920

Page 20

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Question

Find Major="BS" OR Year="1"

Buckets searched:

A) 2 buckets
B) 4 buckets
C) 5 buckets
D) 6 buckets
E) 8 buckets

Page 21

COSC 404 - Dr. Ramon Lawrence

Grid Files versus Partitioned Hashing
Both grid files and partitioned hashing have different query
performance.

Grid Files:
Good for all types of queries including range and nearest-

neighbor queries.

However, many buckets will be empty or nearly empty because
of attribute correlation. Thus, grid can be space inefficient.

Partitioned Hashing:
Useless for range and nearest-neighbor queries because

physical distance between points is not reflected in closeness
of buckets.

However, hash function will randomize record locations which
should more evenly divide records across buckets.
Partial key searches should be faster than grid files.

Page 22

COSC 404 - Dr. Ramon Lawrence

Bitmap Indexes
A bitmap index is useful for indexing attributes that have a
small number of values. (e.g. gender)
For each attribute value, create a bitmap where a 1 indicates

that a record at that position has that attribute value.

Retrieve matching records by id.
bitmap index

on Mjr
bitmap index

on Yrstudent table

Mjr bitmap
BA 01000100
BS 00010000
CS 10100010
ME 00001001

Yr bitmap
1 00010000
2 01000001
3 10100100
4 00001010

How could we use bitmap indexes to answer:
SELECT count(*) FROM student
WHERE Mjr = 'BA' and Year=2

Page 23

COSC 404 - Dr. Ramon Lawrence

Conclusion
The index structures we have seen, specifically, B+-trees are
used for indexing in commercial database systems.
There are also special indexing structures for text and spatial

data.

When tuning a database, examine the types of indexes you can
use and the configuration options available.

Grid files and partitioned hashing are specialized indexing
methods for multi-key indexes.

Bitmap indexes allow fast lookups when attributes have few
values and can be efficiently combined using logical
operations.

Page 24

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Perform searches using grid files.

Perform insertions and searches using partitioned hashing.

Major Theme:
Various DBMSs give you control over the types of indexes that

you can use and the ability to tune their parameters. Knowledge
of the underlying index structures helps performance tuning.

Objectives:
Understand how bitmap indexes are used for searching and why

they provide a space and speed improvement in certain cases.

