
1

COSC 404
Database System Implementation

Query Optimization

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Overview

The query processor performs four main tasks:

1) Verifies the correctness of an SQL statement

2) Converts the SQL statement into relational algebra

3) Performs heuristic and cost-based optimization to build the
more efficient execution plan

4) Executes the plan and returns the results

Page 3

COSC 404 - Dr. Ramon Lawrence

Components of a Query Processor

DB Stats

Database

Query Output

SQL Query

Parser

Translator

Optimizer

Evaluator

Expression
Tree

Logical
Query Tree

Physical
Query Tree

SELECT Name FROM Student
WHERE Major='CS'

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

Student

Name

Major='CS'

Student

(index scan)

(table scan)
Name

Major='CS'

Page 4

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
The Parser

The role of the parser is to convert an SQL statement
represented as a string of characters into a parse tree.

A parse tree consists of nodes, and each node is either an:
Atom - lexical elements such as words (WHERE), attribute or

relation names, constants, operator symbols, etc.

Syntactic category - are names for query subparts.
E.g. <SFW> represents a query in select-from-where form.

Nodes that are atoms have no children. Nodes that correspond
to categories have children based on one of the rules of the
grammar for the language.

Page 5

COSC 404 - Dr. Ramon Lawrence

A Simple SQL Grammar
A grammar is a set of rules dictating the structure of the
language. It exactly specifies what strings correspond to the
language and what ones do not.
Compilers are used to parse grammars into parse trees.
Same process for SQL as programming languages, but somewhat

simpler because the grammar for SQL is smaller.

Our simple SQL grammar will only allow queries in the form of
SELECT-FROM-WHERE.
We will not support grouping, ordering, or SELECT DISTINCT.

We will support lists of attributes in the SELECT clause, lists of
relations in the FROM clause, and conditions in the WHERE
clause.

Page 6

COSC 404 - Dr. Ramon Lawrence

Simple SQL Grammar
<Query> ::= <SFW>
<Query> ::= (<Query>)

<SFW> ::= SELECT <SelList> FROM <FromList> WHERE
<Condition>

<SelList> ::= <Attr>
<SelList> ::= <Attr> , <SelList>

<FromList> ::= <Rel>
<FromList> ::= <Rel> , <FromList>

<Condition> ::= <Condition> AND <Condition>
<Condition> ::= <Tuple> IN <Query>
<Condition> ::= <Attr> = <Attr>
<Condition> ::= <Attr> LIKE <Value>
<Condition> ::= <Attr> = <Value>
<Tuple> ::= <Attr> // Tuple may be 1 attribute

2

Page 7

COSC 404 - Dr. Ramon Lawrence

A Simple SQL Grammar Discussion
The syntactic categories of <Attr>, <Rel>, and <Value> are
special because they are not defined by the rules of the
grammar.
<Attr> - must be a string of characters that matches an

attribute name in the database schema.
<Rel> - must be a character string that matches a relation

name in the database schema.
<Value> - is some quoted string that is a legal SQL pattern or

a valid numerical value.

Page 8

COSC 404 - Dr. Ramon Lawrence

Query Example Database

Student Relation

Student(Id,Name,Major,Year)
Department(Code,DeptName,Location)

Department Relation

Page 9

COSC 404 - Dr. Ramon Lawrence

Query Parsing Example
Return all students who major in computer science.

SELECT Name FROM Student WHERE Major='CS'

Rules applied:
<Query> ::= <SFW>
<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attr> (<Attr> = “Name”)
<Condition> ::= <Attr> = <Value> (<Attr>=“Major”, <Value>=“CS”)
<FromList> ::= <Rel> (<Rel> = “Student”)

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

<SFW>

Page 10

COSC 404 - Dr. Ramon Lawrence

Query Parsing Example 2
Return all departments who have a 4th year student.

SELECT DeptName FROM Department, Student
WHERE Code = Major AND Year = 4

Can you determine what rules are applied?

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE <Condition>

<Attr>

DeptName

<FromList>,

<Rel>

Student

<Rel>

Department

<Query>

<Attr> <Value>=

Year 4

<Condition> <Condition>AND

<Attr> <Attr>=

Code Major

Page 11

COSC 404 - Dr. Ramon Lawrence

Query Parsing Example 3
Return all departments who have a 4th year student.

SELECT DeptName FROM Department WHERE Code IN
(SELECT Major FROM Student WHERE Year=4)

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE

<Condition>

<Tuple>

<Query>

IN

<Attr>

DeptName

<Rel>

Department

<Query>

SELECT

<SelList> FROM
<FromList>

WHERE <Condition>

<Attr>

Major
<Rel>

Student

<Attr> <Value>=

Year 4

<SFW>

<Query>

)(<Attr>

Code

Page 12

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
The Parser Functionality

The parser converts an SQL string to a parse tree.
This involves breaking the string into tokens.

Each token is matched with the grammar rules according to the
current parse tree.

Invalid tokens (not in grammar) generate an error.

If there are no rules in the grammar that apply to the current
SQL string, the command will be flagged to have a syntax error.

We will not concern ourselves with how the parser works.
However, we will note that the parser is responsible for
checking for syntax errors in the SQL statement.
That is, the parser determines if the SQL statement is valid

according to the grammar.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
The Preprocessor

The preprocessor is a component of the parser that performs
semantic validation.

The preprocessor runs after the parser has built the parse tree.
Its functions include:
Mapping views into the parse tree if required.

Verify that the relation and attribute names are actually valid
relations and attributes in the database schema.

Verify that attribute names have a corresponding relation name
specified in the query. (Resolve attribute names to relations.)

Check types when comparing with constants or other attributes.

If a parse tree passes syntax and semantic validation, it is
called a valid parse tree.

A valid parse tree is sent to the logical query processor,
otherwise an error is sent back to the user. Page 14

COSC 404 - Dr. Ramon Lawrence

Query Parsing Question
Question: Select a true statement.

A) The SQL grammar contains information to validate if a given
field name is a valid field in the database.

B) The preprocessor runs before the parsing process.

C) SQL syntax errors are checked by the preprocessor.

D) Errors indicating a table does not exist are generated by the
preprocessor.

Page 15

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
Translator

The translator, or logical query processor, is the component
that takes the parse tree and converts it into a logical query tree.

A logical query tree is a tree consisting of relational operators
and relations. It specifies what operations to apply and the order
to apply them. A logical query tree does not select a particular
algorithm to implement each relational operator.

We will study some rules for how a parse tree is converted into a
logical query tree.

Page 16

COSC 404 - Dr. Ramon Lawrence

Parse Trees to Logical Query Trees
The simplest parse tree to convert is one where there is only
one select-from-where (<SFW>) construct, and the
<Condition> construct has no nested queries.

The logical query tree produced consists of:
1) The cross-product () of all relations mentioned in the
<FromList> which are inputs to:

2) A selection operator, C, where C is the <Condition>
expression in the construct being replaced which is the input to:

3) A projection, L, where L is the list of attributes in the
<SelList>.

Page 17

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

<SFW>

SELECT Name FROM Student WHERE Major='CS'

Name

Major='CS'

Student

Page 18

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 2

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE <Condition>

<Attr>

DeptName

<FromList>,

<Rel>

Student

<Rel>

Department

<Query>

<Attr> <Value>=

Year 4

<Condition> <Condition>AND

<Attr> <Attr>=

Code Major

SELECT DeptName FROM Department, Student
WHERE Code = Major AND Year = 4

Student


Department

Code=Major AND Year = 4

DeptName

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Converting Nested Parse Trees to
Logical Query Trees

Converting a parse tree that contains a nested query is slightly
more challenging.

A nested query may be correlated with the outside query if it
must be re-computed for every tuple produced by the outside
query. Otherwise, it is uncorrelated, and the nested query can
be converted to a non-nested query using joins.

We will define a two-operand selection operator  that takes
the outer relation R as one input (left child), and the right child
is the condition applied to each tuple of R.
The condition is the subquery involving IN.

Page 20

COSC 404 - Dr. Ramon Lawrence

Converting Nested Parse Trees to
Logical Query Trees (2)

The nested subquery translation algorithm involves defining a
tree from root to leaves as follows:
1) Root node is a projection, L, where L is the list of attributes

in the <SelList> of the outer query.

2) Child of root is a selection operator, C, where C is the
<Condition> expression in the outer query ignoring the
subquery.

3) The two-operand selection operator  with left-child as the
cross-product () of all relations mentioned in the <FromList>
of the outer query, and right child as the <Condition>
expression for the subquery.

4) The subquery itself involved in the <Condition> expression
is translated to relational algebra.

Page 21

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 3
SELECT DeptName FROM Department WHERE Code IN

(SELECT Major FROM Student WHERE Year=4)

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE

<Condition>

<Tuple>

<Query>

IN

<Attr>

DeptName

<Rel>

Department

<Query>

SELECT

<SelList> FROM
<FromList>

WHERE <Condition>

<Attr>

Major
<Rel>

Student

<Attr> <Value>=

Year 4

<SFW>

<Query>

)(<Attr>

Code

Page 22

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 3 (2)
SELECT DeptName FROM Department WHERE Code IN

(SELECT Major FROM Student WHERE Year=4)

<Tuple>

Department <Condition>

IN

<Attr>

Code

Student

No outer level selection.

Only one outer
relation.

Condition in parse tree.

Subquery translated to
logical query tree.

Major

Year=4

TRUE



DeptName

Page 23

COSC 404 - Dr. Ramon Lawrence

Converting Nested Parse Trees to
Logical Query Trees (3)

Now, we must remove the two-operand selection and replace it
by relational algebra operators.

Rule for replacing two-operand selection (uncorrelated):
Let R be the first operand, and the second operand is a
<Condition> of the form t IN S. (S is uncorrelated subquery.)

1) Replace <Condition> by the tree that is expression for S.
May require applying duplicate elimination if expression has duplicates.

2) Replace two-operand selection by one-argument selection,
C, where C is the condition that equates each component of
the tuple t to the corresponding attribute of relation S.

3) Give C an argument that is the product of R and S.

Page 24

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Conversion

Replaced  with C

and .

t

R <Condition>

IN S
May need to
eliminate
duplicates.




S

R

C

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 3 (3)

<Tuple>

Department <Condition>

IN

<Attr>

Code

Student

Replaced  with C

and .

Major is not
a key.



DeptName

Major

Year=4

Year=4

Department

Student




DeptName

Major

Code=Major

Page 26

COSC 404 - Dr. Ramon Lawrence

Correlated Nested Subqueries
Translating correlated subqueries is more difficult because the
result of the subquery depends on a value defined outside the
query itself.

Correlated subqueries may require the subquery to be
evaluated for each tuple of the outside relation as an attribute
of each tuple is used as the parameter for the subquery.
We will not study translation of correlated subqueries.

Example:

Return all students that are more senior than the
average for their majors.

SELECT Name FROM Student s WHERE year >
(SELECT Avg(Year) FROM student AS s2

WHERE s.major = s2.major)

Page 27

COSC 404 - Dr. Ramon Lawrence

Logical Query Tree Question
Question: True or False: A logical query tree has relational
algebra operators and specifies the algorithm used for each of
them.

A) True

B) False

Page 28

COSC 404 - Dr. Ramon Lawrence

Logical Query Tree Question (2)
Question: True or False: A logical query tree is the final plan
used for executing the query.

A) True

B) False

Page 29

COSC 404 - Dr. Ramon Lawrence

Parsing Review Question
Build the parse tree for the following SQL query then convert it
into a logical query tree.

SELECT Name, DeptName FROM Department, Student
WHERE Code = Major and Code = 'CS'

Page 30

COSC 404 - Dr. Ramon Lawrence

Optimizing the Logical Query Plan
The translation rules converting a parse tree to a logical query
tree do not always produce the best logical query tree.

It is possible to optimize the logical query tree by applying
relational algebra laws to convert the original tree into a more
efficient logical query tree.

Optimizing a logical query tree using relational algebra laws is
called heuristic optimization because the optimization
process uses common conversion techniques that result in
more efficient query trees in most cases, but not always.
The optimization rules are heuristics.

We begin with a summary of relational algebra laws.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Relational Algebra Laws
Just like there are laws associated with the mathematical
operators, there are laws associated with the relational algebra
operators.

These laws often involve the properties of:
commutativity - operator can be applied to operands

independent of order.
E.g. A + B = B + A - The “+” operator is commutative.

associativity - operator is independent of operand grouping.
E.g. A + (B + C) = (A + B) + C - The “+” operator is associative.

Page 32

COSC 404 - Dr. Ramon Lawrence

Associative and Commutative Operators
The relational algebra operators of cross-product (), join (),
set and bag union (S and B), and set and bag intersection
(S and B) are all associative and commutative.

R  S = S  R

Commutative Associative

R  S = S  R

R  S = S  R

R S = S R

(R  S)  T = R  (S  T)

(R  S)  T = R  (S  T)

(R  S)  T = R  (S  T)

(R S) T = R (S T)

Page 33

COSC 404 - Dr. Ramon Lawrence

1) Complex selections involving AND or OR can be broken into
two or more selections: (splitting laws)

2) Selection operators can be evaluated in any order:

3) Selection can be done before or after set operations and
joins:

Laws Involving Selection

C1 AND C2
(R) = C1

(C2
(R))

C1 OR C2
(R) = (C1

(R)) S (C2
(R))

C1 AND C2
(R) = C2

(C1
(R)) = C1

(C2
(R))

C(R  S) = C(R)  C(S)
C(R - S) = C(R) – S = C(R) - C(S)

C(R S) = C(R) S
C(R  S) = C(R)  S = C(R)  C(S)

Page 34

COSC 404 - Dr. Ramon Lawrence

1) Selection and cross-product can be converted to a join:

2) Selection and join can also be combined:

Laws Involving Selection and Joins

C(R  S) = R C S

C(R D S) = R C AND D S

Page 35

COSC 404 - Dr. Ramon Lawrence

1) Example relation is R(a,b,c).

Given expression:

Can be converted to:

then to:

There is another way to divide up the expression. What is it?

2) Given relations R(a,b) and S(b,c).

Given expression:

Can be converted to:

then to:

finally to:

Is there anything else we could do?

Laws Involving Selection Examples

(a=1 OR a=3) AND b<c(R)

a=1 OR a=3(b<c(R))
a=1(b<c(R))  a=3(b<c(R))

(a=1 OR a=3) AND b<c(R S)

(a=1 OR a=3) b<c(R S))

(a=1 OR a=3)(R b<c(S))
(a=1 OR a=3)(R) b<c(S)

Page 36

COSC 404 - Dr. Ramon Lawrence

Like selections, it is also possible to push projections down the
logical query tree. However, the performance gained is less
than selections because projections just reduce the number of
attributes instead of reducing the number of tuples.
Unlike selections, it is common for a pushed projection to also

remain where it is.

General principle: We may introduce a projection anywhere
in an expression tree, as long as it eliminates only attributes
that are never used by any of the operators above, and are not
in the result of the entire expression.

Note that discussion considers bag projection as normally
implemented in SQL (duplicates are not eliminated).

Laws Involving Projection

7

Page 37

COSC 404 - Dr. Ramon Lawrence

1) Projections can be done before joins as long as all attributes
required are preserved.

L is a set of attributes to be projected. M is the attributes of R that are
either join attributes or are attributes of L. N is the attributes of S that are
either join attributes or attributes of L.

2) Projection can be done before bag union but NOT before set
union or set/bag intersection and difference.

3) Projection can be done before selection.

4) Only the last projection operation is needed:

Laws Involving Projection (2)

L(R  S) = L(M(R)  N(S))
L(R S) = L((M(R) N(S))

L(R B S) = L(R) B L(S)

L (C (R)) = L(C (M(R)))

L (M (R)) = L(R) Page 38

COSC 404 - Dr. Ramon Lawrence

1) Given relations R(a,b,c) and S(c,d,e).

Given expression:

Can be converted to:

2) Using R(a,b,c) and the expression:

Can be converted to:

Laws Involving Projection Examples

b,d(R S)
b,d(b,c(R) c,d(S))

b(a=5(R))

b(a=5(a,b(R))

Page 39

COSC 404 - Dr. Ramon Lawrence

Duplicate elimination () can be done before many operators.

Note that (R) = R occurs when R has no duplicates:
1) R may be a stored relation with a primary key.

2) R may be the result after a grouping operation.

Laws for pushing duplicate elimination operator ():

Duplicate elimination () can also be pushed through bag
intersection, but not across union, difference, or projection.

Laws Involving Duplicate Elimination

(R  S) = (R)  (S)

(C(R) = C((R))

(R S) = (R) (S)
(R D S) = (R) D (S)

(R  S) = (R)  (S)
Page 40

COSC 404 - Dr. Ramon Lawrence

The grouping operator () laws depend on the aggregate
operators used.

There is one general rule, however, that grouping subsumes
duplicate elimination:

The reason is that some aggregate functions are unaffected by
duplicates (MIN and MAX) while other functions are (SUM,
COUNT, and AVG).

Laws Involving Grouping

(L(R)) = L(R)

Page 41

COSC 404 - Dr. Ramon Lawrence

Relational Algebra Question
Question: How many of the following equivalences are true?
Let C = predicate with only R attributes, D = predicate with only
S attributes, and E = predicate with only R and S attributes.

A) 0

B) 1

C) 2

D) 3

E) 4

C AND D (R S) = C(R) D(S)

C AND D AND E (R S) = E(C(R) D(S))
C OR D (R S) = [C(R) S] S [R D(S)]

L(R S S) = L(R) S L(S)

Page 42

COSC 404 - Dr. Ramon Lawrence

Give examples to show that:
a) Bag projection cannot be pushed below set union.

b) Duplicate elimination cannot be pushed below bag projection.

Relational Algebra Question

L(R S S) != L(R) S L(S)

(L(R)) != L((R))

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Heuristic query optimization takes a logical query tree as
input and constructs a more efficient logical query tree by
applying equivalence preserving relational algebra laws.

Equivalence preserving transformations insure that the
query result is identical before and after the transformation is
applied. Two logical query trees are equivalent if they produce
the same result.

Note that heuristic optimization does not always produce the
most efficient logical query tree as the rules applied are only
heuristics!

Heuristic Query Optimization

Page 44

COSC 404 - Dr. Ramon Lawrence

Rules of Heuristic Query Optimization
1. Deconstruct conjunctive selections into a sequence of single
selection operations.

2. Move selection operations down the query tree for the
earliest possible execution.

3. Replace Cartesian product operations that are followed by a
selection condition by join operations.

4. Execute first selection and join operations that will produce
the smallest relations.

5. Deconstruct and move as far down the tree as possible lists
of projection attributes, creating new projections where needed.

Page 45

COSC 404 - Dr. Ramon Lawrence

Heuristic Optimization Example

SELECT Name FROM Student WHERE Major="CS"

No optimization possible.

Student

Name(Major=“CS’(Student))

Name

Major='CS'

Page 46

COSC 404 - Dr. Ramon Lawrence

Heuristic Optimization Example 2
SELECT DeptName FROM Department, Student

WHERE Code = Major AND Year = 4

Optimizations
- push selection down
- push projection down
- merge selection and

cross-product
Student Department

Year=4 DeptName,Code

Major=Code

DeptName

DeptName(Code=Major AND Year=4(Student  Department))
Original:

Optimized:

DeptName(( Year=4(Student)) Code=Major (DeptName,Code(Department)))

Student


Department

DeptName

Code=Major AND Year=4

Page 47

COSC 404 - Dr. Ramon Lawrence

Heuristic Optimization Example 3
SELECT DeptName FROM Department WHERE Id IN

(SELECT Major FROM Student WHERE Year=4)

Optimizations
- merge selection and

cross-product
- push projection down

Department

DeptName,Code

Major=Code

DeptName

Student



Major

Year=4

Department

Student




DeptName

Major

Year=4

Id=Major

Page 48

COSC 404 - Dr. Ramon Lawrence

A canonical logical query tree is a logical query tree where all
associative and commutative operators with more than two
operands are converted into multi-operand operators.
This makes it more convenient and obvious that the operands

can be combined in any order.

This is especially important for joins as the order of joins may
make a significant difference in the performance of the query.

Canonical Logical Query Trees

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Canonical Logical Query Tree Example

R





S T

U V W

Original Query Tree Canonical Query Tree

R



S T

U V W

Page 50

COSC 404 - Dr. Ramon Lawrence

Canonical Query Tree Question
Question: What does the original logical query tree imply that
the canonical tree does not?

A) an order of operator execution

B) the algorithms used for each relational operator

C) the sizes of each input

Page 51

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Physical Query Plan

A physical query plan is derived from a logical query plan by:
1) Selecting an order and grouping for operations like joins,

unions, and intersections.

2) Deciding on an algorithm for each operator in the logical
query plan.
 e.g. For joins: Nested-loop join, sort join or hash join

3) Adding additional operators to the logical query tree such as
sorting and scanning that are not present in the logical plan.

4) Determining if any operators should have their inputs
materialized for efficiency.

Whether we perform cost-based or heuristic optimization, we
eventually must arrive at a physical query tree that can be
executed by the evaluator.

Page 52

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Heuristic versus Cost Optimization

To determine when one physical query plan is better than
another, we must have an estimate of the cost of the plan.

Heuristic optimization is normally used to pick the best logical
query plan.

Cost-based optimization is used to determine the best physical
query plan given a logical query plan.

Note that both can be used in the same query processor (and
typically are). Heuristic optimization is used to pick the best
logical plan which is then optimized by cost-based techniques.

Page 53

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Estimating Operation Cost

To determine when one physical query plan is better than
another for cost-based optimization, we must have an estimate
of the cost of a physical query plan.

Note that the query optimizer will very rarely know the exact
cost of a query plan because the only way to know is to
execute the query itself!
Since the cost to execute a query is much greater than the cost

to optimize a query, we cannot execute the query to determine
its cost!

It is important to be able to estimate the cost of a query plan
without executing it based on statistics and general formulas.

Page 54

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Estimating Operation Cost (2)

Statistics for base relations such as B(R), T(R), and V(R,a)
are used for optimization and can be gathered directly from the
data, or estimated using statistical gathering techniques.

One of the most important factors determining the cost of the
query is the size of the intermediate relations. An intermediate
relation is a relation generated by a relational algebra operator
that is the input to another query operator.
The final result is not an intermediate relation.

The goal is to come up with general rules that estimate the
sizes of intermediate relations that give accurate estimates, are
easy to compute, and are consistent.
There is no one set of agreed-upon rules!

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Projection Sizes

Calculating the size of a relation after the projection operation
is easy because we can compute it directly.
Assuming we know the size of the input, we can calculate the

size of the output based on the size of the input records and the
size of the output records.

The projection operator decreases the size of the tuples, not
the number of tuples.

For example, given relation R(a,b,c) with size of a = size of b =
4 bytes, and size of c = 100 bytes. T(R) = 10000 and
unspanned block size is 1024 bytes. If the projection operation
is a,b, what is the size of the output U in blocks?

T(U) = 10000. Output tuples are 8 bytes long.
bfr = 1024/8 = 128 B(U) = 10000/128 = 79
B(R) = 10000 / (1024/108) = 1112
Savings = (B(R) - B(U))/B(R)*100% = 93% Page 56

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes

A selection operator generally decreases the number of tuples
in the output compared to the input. By how much does the
operator decrease the input size?

The selectivity (sf) is the fraction of tuples selected by a
selection operator. Common cases and their selectivities:
1) Equality: S = a=v (R) - sf = 1/V(R,a) T(S) = T(R)/V(R,a)
Reason: Based on the assumption that values occur equally likely in the

database. However, estimate is still the best on average even if the
values v for attribute a are not equally distributed in the database.

2) Inequality: S = a<v (R) - sf = 1/3 T(S) = T(R)/3
Reason: On average, you would think that the value should be T(R)/2.

However, queries with inequalities tend to return less than half the
tuples, so the rule compensates for this fact.

3) Not equals: S = a!=v (R) - sf = 1 T(S) = T(R)
Reason: Assume almost all tuples satisfy the condition.

Page 57

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes (2)

Simple selection clauses can be connected using AND or OR.

A complex selection operator using AND (a=10 AND b<20(R)) is the
same as a cascade of simple selections (a=10 (b<20(R)).

The selectivity is the product of the selectivity of the individual
clauses.

Example: Given R(a,b,c) and S =a=10 AND b<20(R), what is the
best estimate for T(S)? Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = 1/3 * 1/50 = 1/150.
T(S) = T(R)* 1/150 = 67

Page 58

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes (3)

For complex selections using OR (S =C1 OR C2(R)), the # of
output tuples can be estimated by the sum of the # of tuples for
each condition.
Measuring the selectivity with OR is less precise, and simply

taking the sum is often an overestimate.

A better estimate assumes that the two clauses are
independent, leading to the formula:

n * (1 - (1-m1/n) * (1 – m2/n))

m1 and m2 are the # of tuples that satisfy C1 and C2 respectively.

n is the number of tuples of R (i.e. T(R)).

1-m1/n and 1-m2/n are the fraction of tuples that do not satisfy C1 (resp.
C2). The product of these numbers is the fraction that do not satisfy
either condition.

Page 59

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes (4)

Example: Given R(a,b,c) and S =a=10 OR b<20(R), what is the
best estimate for T(S)? Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = (1 - (1 - 1/50)(1 - 1/3)) = .3466
T(S) = T(R) *.3466 = 3466

Simple method results in T(S) = 200 + 3333 = 3533.

Page 60

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Join Sizes

We will only study estimating the size of natural join.
Other types of joins are equivalent or can be translated into a

cross-product followed by a selection.

The two relations joined are R(X,Y) and S(Y,Z).
We will assume Y consists of only one attribute.

The challenge is we do not know how the set of values of Y in
R relate to the values of Y in S. There are some possibilities:
1) The two sets are disjoint. Result size = 0.

2) Y may be a foreign key of R joining to a primary key of S.
Result size in this case is T(R).

3) Almost all tuples of R and S have the same value for Y, so
result size in the worst case is T(R)*T(S).

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Estimating Join Sizes (2)
The result size of joining relations R(X,Y) and S(Y,Z) can be
approximated by:

Argument:
Every tuple of R has a 1/V(S,Y) chance of joining with every tuple of S.

On average then, each tuple of R joins with T(S)/V(S,Y) tuples. If there
are T(R) tuples of R, then the expected size is T(R) * T(S)/V(S,Y).

A symmetric argument can be made from the perspective of joining
every tuple of S. Each tuple has a 1/V(R,Y) chance of joining with every
tuple of R. On average, each tuple of R joins with T(R)/V(R,Y) tuples.
The expected size is then T(S) * T(R)/V(R,Y).

In general, we choose the smaller estimate for the result size (divide by
the maximum value).

Page 62

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Join Sizes Example

Example:
R(a,b) with T(R) = 1000 and V(R,b) = 20.

S(b,c) with T(S) = 2000, V(S,b) = 50, and V(S,c) = 100

U(c,d) with T(U) = 5000 and V(U,c) = 500

Calculate the natural join R S U.
1) (R S) U -

T(R S) = T(R)T(S)/max(V(R,b),V(S,b))

= 1000 * 2000 / 50 = 40,000

Now join with U.

Final size = T(R S)*T(U)/max(V(R S,c),V(U,c))

= 40000 * 5000 / 500 = 400,000

Now, calculate the natural join like this: R (S U).
Which of the two join orders is better?

Page 63

COSC 404 - Dr. Ramon Lawrence

Estimating Join Sizes
Estimating V(R,a)

The database will keep statistics on the number of distinct
values for each attribute a in each relation R, V(R,a).

When a sequence of operations is applied, it is necessary to
estimate V(R,a) on the intermediate relations.

For our purposes, there will be three common cases:
a is the primary key of R then V(R,a) = T(R)
The number of distinct values is the same as the # tuples in R.

a is a foreign key of R to another relation S then V(R,a) = T(S)
In the worst case, the number of distinct values of a cannot be larger than

the number of tuples of S since a is a foreign key to the primary key of S.

If a selection occurs on relation R before a join, then V(R,a) after
the selection is the same as V(R,a) before selection.
This is often strange since V(R,a) may be greater than # of tuples in

intermediate result! V(R,a) <> # of tuples in result.
Page 64

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Sizes of Other Operators

The size of the result of set operators, duplicate elimination,
and grouping is hard to determine. Some estimates are below:
Union
bag union = sum of two argument sizes

set union = minimum is the size of the largest relation, maximum is the
sum of the two relations sizes. Estimate by taking average of min/max.

Intersection
minimum is 0, maximum is size of smallest relation. Take average.

Difference
Range is between T(R) and T(R) - T(S) tuples. Estimate: T(R) - 1/2*T(S)

Duplicate Elimination
Range is 1 to T(R). Estimate by either taking smaller of 1/2*T(R) or

product of all V(R,ai) for all attributes ai.

Grouping
Range and estimate is similar to duplicate elimination.

Page 65

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Cost-Based Optimization

Cost-based optimization is used to determine the best
physical query plan given a logical query plan.

The cost of a query plan in terms of disk I/Os is affected by:
1) The logical operations chosen to implement the query (the

logical query plan).

2) The sizes of the intermediate results of operations.

3) The physical operators selected.

4) The ordering of similar operations such as joins.

5) If the inputs are materialized.

Page 66

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Obtaining Size Estimates

The cost calculations for the physical operators relied on
reasonable estimates for B(R), T(R), and V(R,a).

Most DBMSs allow an administrator to explicitly request these
statistics be gathered. It is easy to gather them by performing
a scan of the relation. It is also common for the DBMS to
gather these statistics independently during its operation.
Note that by answering one query using a table scan, it can

simultaneously update its estimates about that table!

It is also possible to produce a histogram of values for use with
V(R,a) as not all values are equally likely in practice.
Histograms display the frequency that attribute values occur.

Since statistics tend not to change dramatically, statistics are
computed only periodically instead of after every update.

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Using Size Estimates
in Heuristic Optimization

Size estimates can also be used during heuristic optimization.

In this case, we are not deciding on a physical plan, but rather
determining if a given logical transformation will make sense.

By using statistics, we can estimate intermediate relation sizes
(independent of the physical operator chosen), and thus
determine if the logical transformation is useful.

Page 68

COSC 404 - Dr. Ramon Lawrence

Using Size Estimates
in Cost-based Optimization

Given a logical query plan, the simplest algorithm to determine
the best physical plan is an exhaustive search.

In an exhaustive search, we evaluate the cost of every
physical plan that can be derived from the logical plan and pick
the one with minimum cost.

The time to perform an exhaustive search is extremely long
because there are many combinations of physical operator
algorithms, operator orderings, and join orderings.

Page 69

COSC 404 - Dr. Ramon Lawrence

Using Size Estimates
in Cost-based Optimization (2)

Since exhaustive search is costly, other approaches have been
proposed based on either a top-down or bottom-up approach.

Top-down algorithms start at the root of the logical query tree
and pick the best implementation for each node starting at the
root.

Bottom-up algorithms determine the best method for each
subexpression in the tree (starting at the leaves) until the best
method for the root is determined.

Page 70

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Choosing a Selection Method

In building the physical query plan, we will have to pick an
algorithm to evaluate each selection operator.

Some of our choices are:
table scan

index scan

There also may be several variants of each choice if there are
multiple indexes.

We evaluate the cost of each choice and select the best one.

Page 71

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Choosing a Join Method

In building the physical query plan, we will have to pick an
algorithm to evaluate each join operator:
nested-block join - one-pass join or nested-block join used if

reasonably sure that relations will fit in memory.

sort-join is good when arguments are sorted on the join
attribute or there are two or more joins on the same attribute.

index-join may be used when an index is available.

hash-join is generally used if a multipass join is required, and
no sorting or indexing can be exploited.

Page 72

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Pipelining versus Materialization

The default action for iterators is pipelining when the inputs to
the operator provide results a tuple-at-a-time.

However, some operators require the ability to scan the inputs
multiple times. This requires the input operator to be able to
support rescan.

An alternative to using rescan is to materialize the results of an
input to disk. This has two benefits:
Operators do not have to implement rescan.

It may be more efficient to compute the result once, save it to
disk, then read it from disk multiple times than to re-compute it
each time.

Plans can use a materialization operator at any point to
materialize the output of another operator.

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Selecting a Join Order
Since joins are the most costly operation, determining the best
possible join order will result in more efficient queries.

Selecting a join order is most important if we are performing a
join of three or more relations. However, a join of two relations
can be evaluated in two different ways depending on which
relation is chosen to be the left argument.
Some algorithms (such as nested-block join and one-pass join)

are more efficient if the left argument is the smaller relation.

A join tree is used to graphically display the join order.

Page 74

COSC 404 - Dr. Ramon Lawrence

Join Tree Examples

Left-Deep Join Tree

T

U

SR

Balanced Join Tree Right-Deep Join Tree

S

R

T U

T USR

Page 75

COSC 404 - Dr. Ramon Lawrence

Join Tree Question
Question: How many possible join tree shapes (different trees
ignoring relations at leaves) are there for joining 4 nodes?

A) 3

B) 4

C) 5

D) 6

E) 8

Page 76

COSC 404 - Dr. Ramon Lawrence

Join Tree Question (2)
Question: Assuming that every relation can join with every
other relation, how many distinct join trees (considering
different relations at leaf nodes) are there for joining 4 nodes?

A) 256

B) 120

C) 60

D) 20

E) 5

Page 77

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Selecting a Join Order

Dynamic programming is used to select a join order.

Algorithm to find best join tree for a set of n relations:
1) Find the best plan for each relation.
File scan, index scan

2) Find the best plan to combine pairs of relations found in step
#1. If have two plans for R and S, test
R ⨝ S and S ⨝ R for all types of joins.

May also consider interesting sort orders.

3) Of the plans produced involving two relations, add a third
relation and test all possible combinations.

In practice the algorithm works top down recursively and
remembers the best subplans for later use.

Page 78

COSC 404 - Dr. Ramon Lawrence

Join Order Dynamic Programming
Algorithm

// S is set of relations to join

procedure findBestPlan(S)
{ if (bestplan[S].cost  ) // bestplan stores computed plans

return bestplan[S];

// else bestplan[S] has not been computed. Compute it now.
for each non-empty subset S1 of S such that S1  S
{ P1= findBestPlan(S1);

P2= findBestPlan(S - S1);
A = best algorithm for join of P1 and P2;
cost = P1.cost + P2.cost + cost of A;
if (cost < bestplan[S].cost)
{ bestplan[S].cost = cost;

bestplan[S].plan = P1 ⨝	P2 using A;

}

}

return bestplan[S];

}

14

Page 79

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example
We will perform cost-based optimization on the three example
queries giving the following statistics:
T(Student) = 200,000 ; B(Student) = 50,000

T(Department) = 4 ; B(Department) = 4

V(Student, Major) = 4 ; V(Student, Year) = 4

Student has B+-tree secondary indexes on Major and Year, and
primary index on Id.

Department has a primary index on Code.

Page 80

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example

Student

SELECT Name FROM Student WHERE Major="CS"

Logical Query Tree

Selection will return T(Student)/V(Student,Major) = 200,000/4 = 50,000 tuples.
Since tuples are not sorted by Major, each read may potentially require reading
another block (results in another seek + rotational latency).
Thus, table scan will be more efficient.
Projection performed using table scan of pipelined output from selection.

Name

Major='CS'

Physical Query Tree

Student

(table scan)

(table scan)

Name

Major='CS'

Page 81

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example 2
SELECT DeptName FROM Department, Student

WHERE Code = Major AND Year = 4

Student Department

Year=4 DeptName,Code

Major=Code

DeptName

Logical Query Tree

(table scan)

Student Department

Year=4 DeptName,Code

Major=Code

DeptName

(table scan)

(one-pass join)

(scan)

Physical Query Tree

Selection uses table scan again due to high selectivity.
One-pass join chosen as result from Department subtree is small. Index-join cannot
be used as already performed projection on base relation. Page 82

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example 3
Consider a query involving the join of relations:
Enrolled(StudentID,Year,CourseID)

Course(CID, Name)

and the relations Student and Department.

That is, Student Department Enrolled Course.

Determine the best join ordering given this information:
T(Enrolled) = 1,000,000; B(Enrolled) = 200,000

V(Enrolled,StudentID) = 180,000 ; V(Enrolled,CourseID) = 900

T(Course) = 1000 ; B(Course) = 100

The best join ordering would have the minimum sizes for the
intermediate relations, and we would like to perform the join
with the greatest selectivity first.

Page 83

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example 3 (2)
Possible join pairs and intermediate result sizes:
Student Department = 200,000 * 4 / max(4,4) = 200,000

Student Enrolled

= 200,000*1,000,000 / max(200,000,180,000) = 1,000,000

Enrolled Course

=1,000,000 * 1,000 / max(900,1000) = 1,000,000

Conclusion: Join Student and Department first as it results in
smallest intermediate relation. Then, join that result with
Enrolled, finally join with Course.

Page 84

COSC 404 - Dr. Ramon Lawrence

Cost-based Optimization Question
Question: Would it be better or worse if we joined Enrolled
with Course then joined that with the result of Student and
Department?

A) same

B) better

C) worse

15

Page 85

COSC 404 - Dr. Ramon Lawrence

Join Ordering Example
Query:

Relation statistics:
B(C) = 100, B(E) = 200,000, B(S) = 20,000
T(C) = 1,000 ; T(E) = 1,000,000 ; T(S) = 200,000
Assume block size = 1000 bytes.
Tuple sizes: C = 100 bytes ; E = 200 bytes ; S = 100 bytes
V(E,sid) = 180,000 ; V(E,cid) = 900
Student has secondary B-tree index on Year.
Course has primary B-tree index on cid.

SELECT * FROM Course C, Enrolled E, Student S
WHERE Year = 4 AND C.cid = 'COSC404' AND

E.cid = E.cid and E.sid = S.sid

Page 86

COSC 404 - Dr. Ramon Lawrence

Join Ordering Example (2)
The first step is to calculate best plan for each relation:

Enrolled
only choice is file scan at cost = 200,000

Course with filter cid = 'COSC404':

file scan cost = 100

index scan cost = 1 (assume get record in 1 block with index)

Best plan = index scan with cost = 1

Student with filter Year = 4:

file scan cost = 20,000

index scan will return approximately ¼ of records (50,000). If
assume each does a block access that is 50,000 cost.

Best plan = file scan with cost = 20,000

Page 87

COSC 404 - Dr. Ramon Lawrence

Join Ordering Example (3)
Now calculate all pairs of relations (sets of size two). Test all types of joins
(sort, hash, block). Assume left is build input and M= 1000.

Enrolled, Course: (output size tuples = 1111 blocks = 334)

Enrolled ⨝ Course
Sort = 600,003 ; Hash = 598,003 ; Block nested = 200,201

Course ⨝ Enrolled
Sort = 600,003 ; Hash = 200,001; Block nested = 200,001

Enrolled, Student: (output size tuples = 1,000,000 blocks = 300,000)

Enrolled ⨝ Student
Sort = 660,000 ; Hash = 657,800 ; Block nested = 4,040,000

Student ⨝ Enrolled
Sort = 660,000 ; Hash = 638,000 ; Block nested = 4,220,000

Student, Course (Note: This may not be done if cross-products are not allowed.)

Student X Course cost = 20,000 output size = 40,000 blocks Page 88

COSC 404 - Dr. Ramon Lawrence

{Enrolled, Course}, {Student} {Enrolled, Student}, {Course}

{Student, Course}, {Enrolled} Best plan:

Join Ordering Example (4)

??

C

HJ

E

S

C

HJ

E

??

S

S

HJ

E S

HJ

E

?? ??

C C

??

E

C S



??

E

C S



HJ = 20,334
SJ = 61,002
NLJ = 20,334
Overall: 220,335

HJ = 58,969
SJ = 61,002
NLJ = 27,014
Overall: 227,015

HJ = 898,002
SJ = 900,003
NLJ = 300,301
Overall = 938,301

HJ = 300,001
SJ = 900,003
NLJ = 300,001
Overall = 938,001

HJ = 708,000
SJ = 720,000
NLJ = 8,240,000
Overall = 728,000

HJ = 717,600
SJ = 720,000
NLJ = 8,240,000
Overall = 737,000

HJ

C

HJ

E

S

Overall: 220,335

Page 89

COSC 404 - Dr. Ramon Lawrence

Conclusion
A query processor first parses a query into a parse tree,
validates its syntax, then translates the query into a relational
algebra logical query plan.

The logical query plan is optimized using heuristic optimization
that uses equivalence preserving transformations.

Cost-based optimization is used to select a join ordering and
build an execution plan which selects an implementation for
each of the relational algebra operations in the logical tree.

Page 90

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Convert an SQL query to a parse tree using a grammar.

Convert a parse tree to a logical query tree.

Use heuristic optimization and relational algebra laws to optimize
logical query trees.

Convert a logical query tree to a physical query tree.

Calculate size estimates for selection, projection, joins, and set
operations.

Major Theme:
The query optimizer uses heuristic (relational algebra laws) and

cost-based optimization to greatly improve the performance of
query execution.

16

Page 91

COSC 404 - Dr. Ramon Lawrence

Objectives
Explain the difference between syntax and semantic validation

and the query processor component responsible for each.

Define: valid parse tree, logical query tree, physical query tree

Explain the difference between correlated and uncorrelated
nested queries.

Define and use canonical logical query trees.

Define: join-orders: left-deep, right-deep, balanced join trees

Explain issues in selecting algorithms for selection and join.

Compare/contrast materialization versus pipelining and know
when to use them when building physical query plans.

