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PREFACE

“The number of UNIX installations has grown to 10, with more expected.”

(The UNIX Programmer’s Manual, 2nd Edition, June, 1972.)

The UNIXT operating system started on a cast-off DEC PDP-7 at Bell Labora-
tories in 1969. Ken Thompson, with ideas and support from Rudd Canaday,
Doug Mcliroy, Joe Ossanna, and Dennis Ritchie, wrote a small general-
purpose time-sharing system comfortable enough to attract enthusiastic users
and eventually enough credibility for the purchase of a larger machine — a
PDP-11/20. One of the early users was Ritchie, who helped move the system
to the PDP-11 in 1970. Ritchie also designed and wrote a compiler for the C
programming language. In 1973, Ritchie and Thompson rewrote the UNIX ker-
nel in C, breaking from the tradition that system software is written in assem-
bly language. With that rewrite, the system became essentially what it is
today.

Around 1974 it was licensed to universities ‘“‘for educational purposes” and
a few years later became available for commercial use. During this time, UNIX
systems prospered at Bell Labs, finding their way into laboratories, software
development projects, word processing centers, and operations support systems
in telephone companies. Since then, it has spread world-wide, with tens of
thousands of systems installed, from microcomputers to the largest main-
frames.

What makes the UNIX system so successful? We can discern several rea-
sons. First, because it is written in C, it is portable — UNIX systems run on a
range of computers from microprocessors to the largest mainframes; this is a
strong commercial advantage. Second, the source code is available and written
in a high-level language, which makes the system easy to adapt to particular
requirements. Finally, and most important, it is a good operating system,

+ UNIX is a trademark of Bell Laboratories. “UNIX” is not an acronym, but a weak pun on MUL-
TICS, the operating system that Thompson and Ritchie worked on before UNIx.

vii



viii  PREFACE

especially for programmers. The UNIX programming environment is unusually
rich and productive.

Even though the UNIX system introduces a number of innovative programs
and techniques, no single program or idea makes it work well. Instead, what
makes it effective is an approach to programming, a philosophy of using the
computer. Although that philosophy can’t be written down in a single sen-
tence, at its heart is the idea that the power of a system comes more from the
relationships among programs than from the programs themselves. Many UNIX
programs do quite trivial tasks in isolation, but, combined with other pro-
grams, become general and useful tools.

Our goal in this book is to communicate the UNIX programming philosophy.
Because the philosophy is based on the relationships between programs, we
must devote most of the space to discussions about the individual tools, but
throughout run the themes of combining programs and of using programs to
build programs. To use the UNIX system and its components well, you must
understand not only how to use the programs, but also how they fit into the
environment.

As the UNIX system has spread, the fraction of its users who are skilled in
its application has decreased. Time and again, we have seen experienced
users, ourselves included, find only clumsy solutions to a problem, or write
programs to do jobs that existing tools handle easily. Of course, the elegant
solutions are not easy to see without some experience and understanding. We
hope that by reading this book you will develop the understanding to make
your use of the system — whether you are a new or seasoned user — effective
and enjoyable. We want you to use the UNIX system well.

We are aiming at individual programmers, in the hope that, by making
their work more productive, we can in turn make the work of groups more
productive. Although our main target is programmers, the first four or five
chapters do not require programming experience to be understood, so they
should be helpful to other users as well.

Wherever possible we have tried to make our points with real examples
rather than artificial ones. Although some programs began as examples for the
book, they have since become part of our own set of everyday programs. All
examples have been tested directly from the text, which is in machine-readable
form.

The book is organized as follows. Chapter 1 is an introduction to the most
basic use of the system. It covers logging in, mail, the file system, commonly-
used commands, and the rudiments of the command interpreter. Experienced
users can skip this chapter.

Chapter 2 is a discussion of the UNIX file system. The file system is central
to the operation and use of the system, so you must understand it to use the
system well. This chapter describes files and directories, permissions and file
modes, and inodes. It concludes with a tour of the file system hierarchy and
an explanation of device files.
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The command interpreter, or shell, is a fundamental tool, not only for run-
ning programs, but also for writing them. Chapter 3 describes how to use the
shell for your own purposes: creating new commands, command arguments,
shell variables, elementary control flow, and input-output redirection.

Chapter 4 is about filters: programs that perform some simple transforma-
tion on data as it flows through them. The first section deals with the grep
pattern-searching command and its relatives; the next discusses a few of the
more common filters such as sort; and the rest of the chapter is devoted to
two general-purpose data transforming programs called sed and awk. sed is
a stream editor, a program for making editing changes on a stream of data as
it flows by. awk is a programming language for simple information retrieval
and report generation tasks. It’s often possible to avoid conventional program-
ming entirely by using these programs, sometimes in cooperation with the
shell.

Chapter 5 discusses how to use the shell for writing programs that will
stand up to use by other people. Topics include more advanced control flow
and variables, traps and interrupt handling. The examples in this chapter
make considerable use of sed and awk as well as the shell.

Eventually one reaches the limits of what can be done with the shell and
other programs that already exist. Chapter 6 talks about writing new programs
using the standard I/O library. The programs are written in C, which the
reader is assumed to know, or at least be learning concurrently. We try to
show sensible strategies for designing and organizing new programs, how to
build them in manageable stages, and how to make use of tools that already
exist.

Chapter 7 deals with the system calls, the foundation under all the other
layers of software. The topics include input-output, file creation, error pro-
cessing, directories, inodes, processes, and signals.

Chapter 8 talks about program development tools: yacc, a parser-
generator; make, which controls the process of compiling a big program; and
lex, which generates lexical analyzers. The exposition is based on the
development of a large program, a C-like programmable calculator.

Chapter 9 discusses the document preparation tools, illustrating them with a
user-level description and a manual page for the calculator of Chapter 8. It
can be read independently of the other chapters.

Appendix 1 summarizes the standard editor ed. Although many readers
will prefer some other editor for daily use, ed is universally available, efficient
and effective. Its regular expressions are the heart of other programs like
grep and sed, and for that reason alone it is worth learning.

Appendix 2 contains the reference manual for the calculator language of
Chapter 8.

Appendix 3 is a listing of the final version of the calculator program,
presenting the code all in one place for convenient reading.
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Some practical matters. First, the UNIX system has become very popular,
and there are a number of versions in wide use. For example, the 7th Edition
comes from the original source of the UNIX system, the Computing Science
Research Center at Bell Labs. System III and System V are the official Bell
Labs-supported versions. The University of California at Berkeley distributes
systems derived from the 7th Edition, usually known as UCB 4.xBSD. In
addition, there are numerous variants, particularly on small computers, that
are derived from the 7th Edition.

We have tried to cope with this diversity by sticking closely to those aspects
that are likely to be the same everywhere. Although the lessons that we want
to teach are independent of any particular version, for specific details we have
chosen to present things as they were in the 7th Edition, since it forms the
basis of most of the UNIX systems in widespread use. We have also run the
examples on Bell Labs’ System V and on Berkeley 4.1BSD; only trivial changes
were required, and only in a few examples. Regardless of the version your
machine runs, the differences you find should be minor.

Second, although there is a lot of material in this book, it is not a reference
manual. We feel it is more important to teach an approach and a style of use
than just details. The UNIX Programmer’s Manual is the standard source of
information. You will need it to resolve points that we did not cover, or to
determine how your system differs from ours.

Third, we believe that the best way to learn something is by doing it. This
book should be read at a terminal, so that you can experiment, verify or con-
tradict what we say, explore the limits and the variations. Read a bit, try it
out, then come back and read some more.

We beiieve that the UNIX system, though certainly not perfect, is a mar-
velous computing environment. We hope that reading this book will help you
to reach that conclusion too.

We are grateful to many people for constructive comments and criticisms,
and for their help in improving our code. In particular, Jon Bentley, John
Linderman, Doug Mcllroy, and Peter Weinberger read multiple drafts with
great care. We are indebted to Al Aho, Ed Bradford, Bob Flandrena, Dave
Hanson, Ron Hardin, Marion Harris, Gerard Holzmann, Steve Johnson, Nico
Lomuto, Bob Martin, Larry Rosler, Chris Van Wyk, and Jim Weythman for
their comments on the first draft. We also thank Mike Bianchi, Elizabeth
Bimmler, Joe Carfagno, Don Carter, Tom De Marco, Tom Duff, David Gay,
Steve Mahaney, Ron Pinter, Dennis Ritchie, Ed Sitar, Ken Thompson, Mike
Tilson, Paul Tukey, and Larry Wehr for valuable suggestions.

Brian Kernighan

Rob Pike



cHAPTER 1: UNIX FOR BEGINNERS

What is “UNIX’? In the narrowest sense, it is a time-sharing operating sys-
tem kernel: a program that controls the resources of a computer and allocates
them among its users. It lets users run their programs; it controls the peri-
pheral devices (discs, terminals, printers, and the like) connected to the
machine; and it provides a file system that manages the long-term storage of
information such as programs, data, and documents.

In a broader sense, “UNIX” is often taken to include not only the kernel,
but also essential programs like compilers, editors, command languages, pro-
grams for copying and printing files, and so on.

Still more broadly, “UNIX" may even include programs developed by you or
other users to be run on your system, such as tools for document preparation,
routines for statistical analysis, and graphics packages.

Which of these uses of the name “UNIX” is correct depends on which level
of the system you are considering. When we use ‘“UNIX” in the rest of this
book, context should indicate which meaning is implied.

The UNIX system sometimes looks more difficult than it is — it’s hard for a
newcomer to know how to make the best use of the facilities available. But
fortunately it’s not hard to get started — knowledge of only a few programs
should get you off the ground. This chapter is meant to help you to start using
the system as quickly as possible. It’s an overview, not a manual; we’ll cover
most of the material again in more detail in later chapters. We’ll talk about
these major areas:

e basics — logging in and out, simple commands, correcting typing mistakes,
mail, inter-terminal communication.

e day-to-day use — files and the file system, printing files, directories,
commonly-used commands.

e the command interpreter or shell — filename shorthands, redirecting input
and output, pipes, setting erase and kill characters, and defining your own
search path for commands.

If you’ve used a UNIX system before, most of this chapter should be familiar;
you might want to skip straight to Chapter 2.

1



2 THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 1

You will need a copy of the UNIX Programmer’s Manual, even as you read
this chapter; it’s often easier for us to tell you to read about something in the
manual than to repeat its contents here. This book is not supposed to replace
it, but to show you how to make best use of the commands described in it.
Furthermore, there may be differences between what we say here and what is
true on your system. The manual has a permuted index at the beginning that’s
indispensable for finding the right programs to apply to a problem; learn to use
1t.

Finally, a word of advice: don’t be afraid to experiment. If you are a
beginner, there are very few accidental things you can do to hurt yourself or
other users. So learn how things work by trying them. This is a long chapter,
and the best way to read it is a few pages at a time, trying things out as you

go.
1.1 Getting started

Some prerequisites about terminals and typing

To avoid explaining everything about using computers, we must assume you
have some familiarity with computer terminals and how to use them. If any of
the following statements are mystifying, you should ask a local expert for help.

The UNIX system is full duplex: the characters you type on the keyboard are
sent to the system, which sends them back to the terminal to be printed on the
screen. Normally, this echo process copies the characters directly to the
screen, so you can see what you are typing, but sometimes, such as when you
are typing a secret password, the echo is turned off so the characters do not
appear on the screen.

Most of the keyboard characters are ordinary printing characters with no
special significance, but a few tell the computer how to interpret your typing.
By far the most important of these is the RETURN key. The RETURN key sig-
nifies the end of a line of input; the system echoes it by moving the terminal’s
cursor to the beginning of the next line on the screen. RETURN must be
pressed before the system will interpret the characters you have typed.

RETURN is an example of a control character — an invisible character that
controls some aspect of input and output on the terminal. On any reasonable
terminal, RETURN has a key of its own, but most control characters do not.
Instead, they must be typed by holding down the CONTROL key, sometimes
called CTL or CNTL or CTRL, then pressing another key, usually a letter. For
example, RETURN may be typed by pressing the RETURN key or,
equivalently, holding down the CONTROL key and typing an ‘m’. RETURN
might therefore be called a control-m, which we will write as ctl-m. Other con-
trol characters include ctl-d, which tells a program that there is no more input;
ctl-g, which rings the bell on the terminal; ctl-h, often called backspace, which
can be used to correct typing mistakes; and ctl-i, often called tab, which
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advances the cursor to the next tab stop, much as on a regular typewriter. Tab
stops on UNIX systems are eight spaces apart. Both the backspace and tab char-
acters have their own keys on most terminals.

Two other keys have special meaning: DELETE, sometimes called RUBOUT
or some abbreviation, and BREAK, sometimes called INTERRUPT. On most
UNIX systems, the DELETE key stops a program immediately, without waiting
for it to finish. On some systems, ctl-c provides this service. And on some
systems, depending on how the terminals are connected, BREAK is a synonym
for DELETE or ctl-c.

A Session with UNIX

Let’s begin with an annotated dialog between you and your UNIX system.
Throughout the examples in this book, what you type is printed in slanted
letters, computer responses are in typewriter-style characters, and
explanations are in italics.

Establish a connection: dial a phone or turn on a switch as necessary.
Your system should say

login: you Type your name, then press RETURN
Password: Your password won’t be echoed as you type it
You have mail. There’s mail to be read after you log in

$ The system is now ready for your commands
$ Press RETURN a couple of times

$ date What's the date and time?

Sun Sep 25 23:02:57 EDT 1983

$ who Who's using the machine?

jlb tty0 Sep 25 13:59

you tty2 Sep 25 23:01

mary tty4 Sep 25 19:03

doug tty5 Sep 25 19:22

egb tty?7 Sep 25 17:17

bob tty8 Sep 25 20:48

$ mail Read your mail

From doug Sun Sep 25 20:53 EDT 1983
give me a call sometime monday

? RETURN moves or to the next message
From mary Sun Sep 25 19:07 EDT 1983 Next message
Lunch at noon tomorrow?

? d Delete this message

$ No more mail

$ mail mary Send mail to mary

Junch at 12 is fine

ctl-d End of mail

$ Hang up phone or turn off terminal

and that’s the end

Sometimes that’s all there is to a session, though occasionally people do
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some work too. The rest of this section will discuss the session above, plus
other programs that make it possible to do useful things.

Logging in

You must have a login name and password, which you can get from your
system administrator. The UNIX system is capable of dealing with a wide
variety of terminals, but it is strongly oriented towards devices with lower case;
case distinctions matter! If your terminal produces only upper case (like some
video and portable terminals), life will be so difficult that you should look for
another terminal.

Be sure the switches are set appropriately on your device: upper and lower
case, full duplex, and any other settings that local experts advise, such as the
speed, or baud rate. Establish a connection using whatever magic is needed
for your terminal; this may involve dialing a telephone or merely flipping a
switch. In either case, the system should type

login:

If it types garbage, you may be at the wrong speed; check the speed setting and
other switches. If that fails, press the BREAK or INTERRUPT key a few times,
slowly. If nothing produces a login message, you will have to get help.

When you get the login: message, type your login name in lower case.
Follow it by pressing RETURN. If a password is required, you will be asked
for it, and printing will be turned off while you type it.

The culmination of your login efforts is a prompt, usually a single charac-
ter, indicating that the system is ready to accept commands from you. The
prompt is most likely to be a dollar sign $ or a percent sign %, but you can
change it to anything you like; we’ll show you how a little later. The prompt is
actually printed by a program called the command interpreter or shell, which is
your main interface to the system.

There may be a message of the day just before the prompt, or a notification
that you have mail. You may also be asked what kind of terminal you are
using; your answer helps the system to use any special properties the terminal
might have.

Typing commands

Once you receive the prompt, you can type commands, which are requests
that the system do something. We will use program as a synonym for com-
mand. When you see the prompt (let’s assume it’s $), type date and press
RETURN. The system should reply with the date and time, then print another
prompt, so the whole transaction will look like this on your terminal:

$ date
Mon Sep 26 12:20:57 EDT 1983
$

Don’t forget RETURN, and don’t type the $. If you think you’re being
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ignored, press RETURN; something should happen. RETURN won’t be men-
tioned again, but you need it at the end of every line.

The next command to try is who, which tells you everyone who is currently
logged in:

$ who

rlm tty0 Sep 26 11:17
piw tty4 Sep 26 11:30
gerard tty7 Sep 26 10:27
mark tty9 Sep 26 07:59
you ttya Sep 26 12:20
$

The first column is the user name. The second is the system’s name for the
connection being used (“‘tty” stands for ‘‘teletype,” an archaic synonym for
“terminal’’). The rest tells when the user logged on. You might also try

$ who am 1
you ttya Sep 26 12:20
$

If you make a mistake typing the name of a command, and refer to a non-
existent command, you will be told that no command of that name can be
found:

$ whom Misspelled command name ...
whom: not found ... S0 system didn’t know how to run it
$

Of course, if you inadvertently type the name of an actual command, it will
run, perhaps with mysterious results.

Strange terminal behavior

Sometimes your terminal will act strangely, for example, each letter may be
typed twice, or RETURN may not put the cursor at the first column of the next
line. You can usually fix this by turning the terminal off and on, or by logging
out and logging back in. Or you can read the description of the command
stty (‘‘set_terminal options”) in Section 1 of the manual. To get intelligent
treatment of tab characters if your terminal doesn’t have tabs, type the com-
mand

$ stty -tabs

and the system will convert tabs into the right number of spaces. If your ter-
minal does have computer-settable tab stops, the command tabs will set them
correctly for you. (You may actually have to say

$ tabs terminal-type

to make it work — see the tabs command description in the manual.)
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Mistakes in typing

If you make a typing mistake, and see it before you have pressed RETURN,
there are two ways to recover: erase characters one at a time or kill the whole
line and re-type it.

If you type the line kill character, by default an at-sign @, it causes the
whole line to be discarded, just as if you’d never typed it, and starts you over
on a new line:

$ ddtae@ Completely botched; start over
date on a new line

Mon Sep 26 12:23:39 EDT 1983

$

The sharp character # erases the last character typed; each # erases one
more character, back to the beginning of the line (but not beyond). So if you
type badly, you can correct as you go:

$ dd#atte##e Fix it as you go
Mon Sep 26 12:24:02 EDT 1983
$

The particular erase and line kill characters are very system dependent. On
many systems (including the one we use), the erase character has been changed
to backspace, which works nicely on video terminals. You can quickly check
which is the case on your system:

$ datee« Try «
datee«: not found It's not «
$ datee# Try #
Mon Sep 26 12:26:08 EDT 1983 Itis #

$

(We printed the backspace as « so you can see it.) Another common choice is
ctl-u for line kill.

We will use the sharp as the erase character for the rest of this section
because it’s visible, but make the mental adjustment if your system is different.
Later on, in ‘“‘tailoring the environment,” we will tell you how to set the erase
and line kill characters to whatever you like, once and for all.

What if you must enter an erase or line kill character as part of the text? If
you precede either # or @ by a backslash \, it loses its special meaning. So to
enter a # or @, type \# or \@. The system may advance the terminal’s cursor
to the next line after your @, even if it was preceded by a backslash. Don’t
worry — the at-sign has been recorded.

The backslash, sometimes called the escape character, is used extensively to
indicate that the following character is in some way special. To erase a
backslash, you have to type two erase characters: \##. Do you see why?

The characters you type are examined and interpreted by a sequence of pro-
grams before they reach their destination, and exactly how they are interpreted
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depends not only on where they end up but how they got there.

Every character you type is immediately echoed to the terminal, unless
echoing is turned off, which is rare. Until you press RETURN, the characters
are held temporarily by the kernel, so typing mistakes can be corrected with
the erase and line kill characters. When an erase or line kill character is pre-
ceded by a backslash, the kernel discards the backslash and holds the following
character without interpretation.

When you press RETURN, the characters being held are sent to the pro-
gram that is reading from the terminal. That program may in turn interpret
the characters in special ways; for example, the shell turns off any special
interpretation of a character if it is preceded by a backslash. We’ll come back
to this in Chapter 3. For now, you should remember that the kernel processes
erase and line kill, and backslash only if it precedes erase or line kill; whatever
characters are left after that may be interpreted by other programs as well.

Exercise 1-1. Explain what happens with
$ date\@
o

Exercise 1-2. Most shells (though not the 7th Edition shell) interpret # as introducing a
comment, and ignore all text from the # to the end of the line. Given this, explain the
following transcript, assuming your erase character is also #:

$ date

Mon Sep 26 12:39:56 EDT 1983

$ #date

Mon Sep 26 12:40:21 EDT 1983

$ \#date

$ \\#date

#date: not found

$

a

Type-ahead

The kernel reads what you type as you type it, even if it’s busy with some-
thing else, so you can type as fast as you want, whenever you want, even when
some command is printing at you. If you type while the system is printing,
your input characters will appear intermixed with the output characters, but
they will be stored away and interpreted in the correct order. You can type
commands one after another without waiting for them to finish or even to
begin.

Stopping a program

You can stop most commands by typing the character DELETE. The
BREAK key found on most terminals may also work, although this is system
dependent. In a few programs, like text editors, DELETE stops whatever the
program is doing but leaves you in that program. Turning off the terminal or
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hanging up the phone will stop most programs.

If you just want output to pause, for example to keep something critical
from disappearing off the screen, type ctl-s. The output will stop almost
immediately; your program is suspended until you start it again. When you
want to resume, type ctl-q.

Logging out

The proper way to log out is to type ctl-d instead of a command; this tells
the shell that there is no more input. (How this actually works will be
explained in the next chapter.) You can usually just turn off the terminal or
hang up the phone, but whether this really logs you out depends on your sys-
tem.

Mail
The system provides a postal system for communicating with other users, so
some day when you log in, you will see the message

You have mail.

before the first prompt. To read your mail, type
$ mail

Your mail will be printed, one message at a time, most recent first. After each
item, mail waits for you to say what to do with it. The two basic responses
are d, which deletes the message, and RETURN, which does not (so it will still
be there the next time you read your mail). Other responses include p to
reprint a message, s filename to save it in the file you named, and q to quit
from mail. (If you don’t know what a file is, think of it as a place where you
can store information under a name of your choice, and retrieve it later. Files
are the topic of Section 1.2 and indeed of much of this book.)

mail is one of those programs that is likely to differ from what we describe
here; there are many variants. Look in your manual for details.

Sending mail to someone is straightforward. Suppose it is to go to the per-
son with the login name nico. The easiest way is this:

$ mail nico

Now type in the text of the letter
on as many lines as you like ...
After the last line of the letter
type a control-d.

ctl-d

$

The ctl-d signals the end of the letter by telling the mail command that there
is no more input. If you change your mind half-way through composing the
letter, press DELETE instead of ct/-d. The half-formed letter will be stored in
a file called dead.letter instead of being sent.
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For practice, send mail to yourself, then type mail to read it. (This isn’t
as aberrant as it might sound — it’s a handy reminder mechanism.)

There are other ways to send mail — you can send a previously prepared
letter, you can mail to a number of people all at once, and you may be able to
send mail to people on other machines. For more details see the description of
the mail command in Section 1 of the UNIX Programmer’s Manual. Hen-
ceforth we’ll use the notation mail(l) to mean the page describing mail in
Section 1 of the manual. All of the commands discussed in this chapter are
found in Section 1.

There may also be a calendar service (see calendar(1)); we’ll show you in
Chapter 4 how to set one up if it hasn’t been done already.

Writing to other users
If your UNIX system has multiple users, someday, out of the blue, your ter-
minal will print something like

Message from mary tty7...

accompanied by a startling beep. Mary wants to write to you, but unless you
take explicit action you won’t be able to write back. To respond, type

$ write mary

This establishes a two-way communication path. Now the lines that Mary
types on her terminal will appear on yours and vice versa, although the path is
slow, rather like talking to the moon.

If you are in the middle of something, you have to get to a state where you
can type a command. Normally, whatever program you are running has to
stop or be stopped, but some programs, such as the editor and write itself,
have a ‘!’ command to escape temporarily to the shell — see Table 2 in
Appendix 1.

The write command imposes no rules, so a protocol is needed to keep
what you type from getting garbled up with what Mary types. One convention
is to take turns, ending each turn with (o), which stands for “‘over,” and to
signal your intent to quit with (oo), for “over and out.”
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Mary’s terminal: Your terminal:

$ write you
$ Message from mary tty7...
write mary

Message from you ttya...

did you forget lunch? (o)
did you forget lunch? (o)
five@
ten minutes (o)

ten minutes (o)

ok (oo0)
ok (oo0)
ctl-d
EOF
ctl-d
$ EOF
$

You can also exit from write by pressing DELETE. Notice that your typing
errors do not appear on Mary’s terminal.

If you try to write to someone who isn’t logged in, or who doesn’t want to
be disturbed, you’ll be told. If the target is logged in but doesn’t answer after
a decent interval, the person may be busy or away from the terminal; simply
type ctl-d or DELETE. If you don’t want to be disturbed, use mesg(1).

News
Many UNIX systems provide a news service, to keep users abreast of
interesting and not so interesting events. Try typing

$ news

There is also a large network of UNIX systems that keep in touch through tele-
phone calls; ask a local expert about netnews and USENET.

The manual

The UNIX Programmer’s Manual describes most of what you need to know
about the system. Section 1 deals with commands, including those we discuss
in this chapter. Section 2 describes the system calls, the subject of Chapter 7,
and Section 6 has information about games. The remaining sections talk about
functions for use by C programmers, file formats, and system maintenance.
(The numbering of these sections varies from system to system.) Don’t forget
the permuted index at the beginning; you can skim it quickly for commands
that might be relevant to what you want to do. There is also an introduction
to the system that gives an overview of how things work.

Often the manual is kept on-line so that you can read it on your terminal.
If you get stuck on something, and can’t find an expert to help, you can print
any manual page on your terminal with the command man command-name.



CHAPTER 1 UNIX FOR BEGINNERS 11

Thus to read about the who command, type
$ man who

and, of course,
$ man man

tells about the man command.

Computer-aided instruction

Your system may have a command called learn, which provides
computer-aided instruction on the file system and basic commands, the editor,
document preparation, and even C programming. Try

$ learn

If 1earn exists on your system, it will tell you what to do from there. If that
fails, you might also try teach.

Games )

It’s not always admitted officially, but one of the best ways to get comfort-
able with a computer and a terminal is to play games. The UNIX system comes
with a modest supply of games, often supplemented locally. Ask around, or
see Section 6 of the manual.

1.2 Day-to-day use: files and common commands

Information in a UNIX system is stored in files, which are much like ordi-
nary office files. Each file has a name, contents, a place to keep it, and some
administrative information such as who owns it and how big it is. A file might
contain a letter, or a list of names and addresses, or the source statements of a
program, or data to be used by a program, or even programs in their execut-
able form and other non-textual material.

The UNIX file system is organized so you can maintain your own personal
files without interfering with files belonging to other people, and keep people
from interfering with you too. There are myriad programs that manipulate
files, but for now, we will look at only the more frequently used ones.
Chapter 2 contains a systematic discussion of the file system, and introduces
many of the other file-related commands.

Creating files — the editor

If you want to type a paper or a letter or a program, how do you get the
information stored in the machine? Most of these tasks are done with a zext
editor, which is a program for storing and manipulating information in the
computer. Almost every UNIX system has a screen editor, an editor that takes
advantage of modern terminals to display the effects of your editing changes in
context as you make them. Two of the most popular are vi and emacs. We
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won’t describe any specific screen editor here, however, partly because of typo-
graphic limitations, and partly because there is no standard one.

There is, however, an older editor called ed that is certain to be available
on your system. It takes no advantage of special terminal features, so it will
work on any terminal. It also forms the basis of other essential programs
(including some screen editors), so it’s worth learning eventually. Appendix 1
contains a concise description.

No matter what editor you prefer, you’ll have to learn it well enough to be
able to create files. We’ll use ed here to make the discussion concrete, and to
ensure that you can make our examples run on your system, but by all means
use whatever editor you like best.

To use ed to create a file called junk with some text in it, do the follow-
ing:

$ ed Invokes the text editor
a ed command to add text
now type in

whatever text you want ...
Type a ‘.’ by itself to stop adding text

w junk Write your text into a file called junk
39 ed prints number of characters written
q Quit ed

$

The command a (“‘append”) tells ed to start collecting text. The ‘“.” that sig-
nals the end of the text must be typed at the beginning of a line by itself.
Don’t forget it, for until it is typed, no other ed commands will be recognized
— everything you type will be treated as text to be added.

The editor command w (‘“‘write’’) stores the information that you typed;
“w junk” stores it in a file called junk. The filename can be any word you
like; we picked junk to suggest that this file isn’t very important.

ed responds with the number of characters it put in the file. Until the w
command, nothing is stored permanently, so if you hang up and go home the
information is not stored in the file. (If you hang up while editing, the data
you were working on is saved in a file called ed.hup, which you can continue
with at your next session.) If the system crashes (i.e., stops unexpectedly
because of software or hardware failure) while you are editing, your file will
contain only what the last write command placed there. But after w the infor-
mation is recorded permanently; you can access it again later by typing

$ ed junk

Of course, you can edit the text you typed in, to correct spelling mistakes,
change wording, rearrange paragraphs and the like. When you’re done, the q
command (“‘quit”) leaves the editor.
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What files are out there?
Let’s create two files, junk and temp, so we know what we have:

$ ed
a
To be or not to be

w junk
19

q

$ ed

a

That is the question.

w temp
22

q
$

The character counts from ed include the character at the end of each line,
called newline, which is how the system represents RETURN.
The 1s command lists the names (not contents) of files:

$ 1s
junk
temp
$

which are indeed the two files just created. (There might be others as well
that you didn’t create yourself.) The names are sorted into alphabetical order
automatically.

1s, like most commands, has options that may be used to alter its default
behavior. Options follow the command name on the command line, and are
usually made up of an initial minus sign ‘-’ and a single letter meant to suggest
the meaning. For example, 1s -t causes the files to be listed in “time” order:
the order in which they were last changed, most recent first.

$ 1s -t
temp
junk

$

The -1 option gives a “long” listing that provides more information about each
file:

$ 1s -1
total 2
-rw-r--r-- 1 you 19 Sep 26 16:25 junk
-rw-r--r-- 1 you 22 Sep 26 16:26 temp

$
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“total 2” tells how many blocks of disc space the files occupy; a block is
usually either 512 or 1024 characters. The string -rw-r--r-- tells who has
permission to read and write the file; in this case, the owner (you) can read
and write, but others can only read it. The “1” that follows is the number of
links to the file; ignore it until Chapter 2. “you” is the owner of the file, that
is, the person who created it. 19 and 22 are the number of characters in the
corresponding files, which agree with the numbers you got from ed. The date
and time tell when the file was last changed.

Options can be grouped: 1s -1t gives the same data as 1s -1, but sorted
with most recent files first. The -u option gives information on when files
were used: 1s -lut gives a long (-1) listing in the order of most recent use.
The option -r reverses the order of the output, so 1s -rt lists in order of
least recent use. You can also name the files you're interested in, and 1s will
list the information about them only:

$ 1s -1 junk
-rw-r--r-- 1 you 19 Sep 26 16:25 junk
$

The strings that follow the program name on the command line, such as -1
and junk in the example above, are called the program’s arguments. Argu-
ments are usually options or names of files to be used by the command.

Specifying options by a minus sign and a single letter, such as -t or the
combined -1t, is a common convention. In general, if a command accepts
such optional arguments, they precede any filename arguments, but may other-
wise appear in any order. But UNIX programs are capricious in their treatment
of multiple options. For example, standard 7th Edition 1s won’t accept

$ 1s -1 -t Doesn’t work in 7th Edition

as a synonym for 1s -1t, while other programs require multiple options to be
separated.

As you learn more, you will find that there is little regularity or system to
optional arguments. Each command has its own idiosyncrasies, and its own
choices of what letter means what (often different from the same function in
other commands). This unpredictable behavior is disconcerting and is often
cited as a major flaw of the system. Although the situation is improving —
new versions often have more uniformity — all we can suggest is that you try
to do better when you write your own programs, and in the meantime keep a
copy of the manual handy.

Printing files — cat and pr

Now that you have some files, how do you look at their contents? There
are many programs to do that, probably more than are needed. One possibility
is to use the editor:
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$ ed junk

19 ed reports 19 characters in junk
1, $p Print lines 1 through last

To be or not to be File has only one line

q All done

$

ed begins by reporting the number of characters in junk; the command 1, $p
tells it to print all the lines in the file. After you learn how to use the editor,
you can be selective about the parts you print.

There are times when it’s not feasible to use an editor for printing. For
example, there is a limit — several thousand lines — on how big a file ed can
handle. Furthermore, it will only print one file at a time, and sometimes you
want to print several, one after another without pausing. So here are a couple
of alternatives.

First is cat, the simplest of all the printing commands. cat prints the con-
tents of all the files named by its arguments:

$ cat junk

To be or not to be

$ cat temp

That is the question.
$ cat junk temp

To be or not to be
That is the question.
$

The named file or files are catenatedt (hence the name “cat’’) onto the termi-
nal one after another with nothing between.

There’s no problem with short files, but for long ones, if you have a high-
speed connection to your computer, you have to be quick with ctl-s to stop
output from cat before it flows off your screen. There is no “‘standard” com-
mand to print a file on a video terminal one screenful at a time, though almost
every UNIX system has one. Your system might have one called pg or more.
Ours is called p; we’ll show you its implementation in Chapter 6.

Like cat, the command pr prints the contents of all the files named in a
list, but in a form suitable for line printers: every page is 66 lines (11 inches)
long, with the date and time that the file was changed, the page number, and
the filename at the top of each page, and extra lines to skip over the fold in
the paper. Thus, to print junk neatly, then skip to the top of a new page and
print temp neatly:

T “Catenate” is a slightly obscure synonym for ‘‘concatenate.”
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$ pr junk temp

Sep 26 16:25 1983 junk Page 1

To be or not to be
(60 more blank lines)

Sep 26 16:26 1983 temp Page 1

That is the question.
(60 more blank lines)
$

pr can also produce multi-column output:
$ pr -3 filenames

prints each file in 3-column format. You can use any reasonable number in
place of “3” and pr will do its best. (The word filenames is a place-holder for
a list of names of files.) pr -m will print a set of files in parallel columns.
See pr(1).

It should be noted that pr is not a formatting program in the sense of re-
arranging lines and justifying margins. The true formatters are nroff and
troff, which are discussed in Chapter 9.

There are also commands that print files on a high-speed printer. Look in
your manual under names like 1p and 1lpr, or look up “‘printer” in the per-
muted index. Which to use depends on what equipment is attached to your
machine. pr and lpr are often used together; after pr formats the informa-
tion properly, 1pr handles the mechanics of getting it to the line printer. We
will return to this a little later.

Moving, copying, removing files — mv, cp, rm

Let’s look at some other commands. The first thing is to change the name
of a file. Renaming a file is done by “moving” it from one name to another,
like this:

$ mv junk precious

This means that the file that used to be called junk is now called precious;
the contents are unchanged. If you run 1s now, you will see a different list:
junk is not there but precious is.
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$ 1s

precious

temp

$ cat junk

cat: can’t open junk
$

Beware that if you move a file to another one that already exists, the target file
is replaced.

To make a copy of a file (that is, to have two versions of something), use
the cp command:

$ cp precious precious.save

makes a duplicate copy of precious in precious.save.
Finally, when you get tired of creating and moving files, the rm command
removes all the files you name:

$ rm temp junk
rm: junk nonexistent
$

You will get a warning if one of the files to be removed wasn’t there, but oth-
erwise rm, like most UNIX commands, does its work silently. There is no
prompting or chatter, and error messages are curt and sometimes unhelpful.
Brevity can be disconcerting to newcomers, but experienced users find talkative
commands annoying.

What’s in a filename?

So far we have used filenames without ever saying what a legal name is, so
it’s time for a couple of rules. First, filenames are limited to 14 characters.
Second, although you can use almost any character in a filename, common
sense says you should stick to ones that are visible, and that you should avoid
characters that might be used with other meanings. We have already seen, for
example, that in the 1s command, 1s -t means to list in time order. So if
you had a file whose name was -t, you would have a tough time listing it by
name. (How would you do it?) Besides the minus sign as a first character,
there are other characters with special meaning. To avoid pitfalls, you would
do well to use only letters, numbers, the period and the underscore until you’re
familiar with the situation. (The period and the underscore are conventionally
used to divide filenames into chunks, as in precious.save above.) Finally,
don’t forget that case distinctions matter — junk, Junk, and JUNK are three
different names.

A handful of useful commands
Now that you have the rudiments of creating files, listing their names, and
printing their contents, we can look at a half-dozen file-processing commands.
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To make the discussion concrete, we’ll use a file called poem that contains a
familiar verse by Augustus De Morgan. Let’s create it with ed:

$ ed

a

Great fleas have little fleas
upon their backs to bite ’‘em,

And little fleas have lesser fleas,
and so ad infinitum.

And the great fleas themselves, in turn,
have greater fleas to go on;

While these again have greater still,
and greater still, and so on.

w poem
263

q
$

The first command counts the lines, words and characters in one or more
files; it is named wc after its word-counting function:

$ wc poem
8 46 263 poem
$

That is, poem has 8 lines, 46 words, and 263 characters. The definition of a
“word” is very simple: any string of characters that doesn’t contain a blank,
tab or newline.

wc will count more than one file for you (and print the totals), and it will
also suppress any of the counts if requested. See wc(1).

The second command is called grep; it searches files for lines that match a
pattern. (The name comes from the ed command g/regular-expression/p,
which is explained in Appendix 1.) Suppose you want to look for the word
“fleas” in poem:

$ grep fleas poem

Great fleas have little fleas

And little fleas have lesser fleas,

And the great fleas themselves, in turn,
have greater fleas to go on;

$

grep will also look for lines that don’t match the pattern, when the option -v
is used. (It’s named ‘v’ after the editor command; you can think of it as
inverting the sense of the match.)
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$ grep -v fleas poem
upon their backs to bite ‘em,
and so ad infinitum.

While these again have greater still,
and greater still, and so on.

$

grep can be used to search several files; in that case it will prefix the
filename to each line that matches, so you can tell where the match took place.
There are also options for counting, numbering, and so on. grep will also
handle much more complicated patterns than just words like ‘“‘fleas,” but we
will defer consideration of that until Chapter 4.

The third command is sort, which sorts its input into alphabetical order
line by line. This isn’t very interesting for the poem, but let’s do it anyway,
just to see what it looks like:

$ sort poem
and greater still, and so on.
and so ad infinitum.
have greater fleas to go on;
upon their backs to bite ‘em,
And little fleas have lesser fleas,
And the great fleas themselves, in turn,
Great fleas have little fleas
While these again have greater still,
$

The sorting is line by line, but the default sorting order puts blanks first, then
upper case letters, then lower case, so it’s not strictly alphabetical.

sort has zillions of options to control the order of sorting — reverse
order, numerical order, dictionary order, ignoring leading blanks, sorting on
fields within the line, etc. — but usually one has to look up those options to be
sure of them. Here are a handful of the most common:

sort -r Reverse normal order

sort -n Sort in numeric order

sort -nr Sort in reverse numeric order
sort -f Fold upper and lower case together
sort +n Sort starting at n+ 1-st field

Chapter 4 has more information about sort.

Another file-examining command is tail, which prints the last 10 lines of
a file. That’s overkill for our eight-line poem, but it’s good for larger files.
Furthermore, tail has an option to specify the number of lines, so to print
the last line of poem:
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$ tail -1 poem
and greater still, and so on.
$

tail can also be used to print a file starting at a specified line:

$ tail +3 filename

starts printing with the 3rd line. (Notice the natural inversion of the minus
sign convention for arguments.)

The final pair of commands is for comparing files. Suppose that we have a
variant of poem in the file new_poem:

$ cat poem

Great fleas have little fleas
upon their backs to bite ‘em,

And little fleas have lesser fleas,
and so ad infinitum.

And the great fleas themselves, in turn,
have greater fleas to go on;

While these again have greater still,
and greater still, and so on.

$ cat new_poem

Great fleas have little fleas
upon their backs to bite them,

And little fleas have lesser fleas,
and so on ad infinitum.

And the great fleas themselves, in turn,
have greater fleas to go on;

While these again have greater still,
and greater still, and so on.

$

There’s not much difference between the two files; in fact you’ll have to look
hard to find it. This is where file comparison commands come in handy. cmp
finds the first place where two files differ:

$ cmp poem new_poem
poem new_poem differ: char 58, line 2
$

This says that the files are different in the second line, which is true enough,
but it doesn’t say what the difference is, nor does it identify any differences
beyond the first.

The other file comparison command is diff, which reports on all lines that
are changed, added or deleted:
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$ diff poem new_poem
2c2
< upon their backs to bite ’‘em,

> upon their backs to bite them,
< and so ad infinitum.

> and so on ad infinitum.

This says that line 2 in the first file (poem) has to be changed into line 2 of the
second file (new_poem), and similarly for line 4.

Generally speaking, cmp is used when you want to be sure that two files
really have the same contents. It’s fast and it works on any kind of file, not
just text. diff is used when the files are expected to be somewhat different,
and you want to know exactly which lines differ. diff works only on files of
text.

A summary of file system commands
Table 1.1 is a brief summary of the commands we’ve seen so far that deal
with files.

1.3 More about files: directories

The system distinguishes your file called junk from anyone else’s of the
same name. The distinction is made by grouping files into directories, rather
in the way that books are placed on shelves in a library, so files in different
directories can have the same name without any conflict.

Generally each user has a personal or home directory, sometimes called
login directory, that contains only the files that belong to him or her. When
you log in, you are “‘in”’ your home directory. You may change the directory
you are working in — often called your working or current directory — but
your home directory is always the same. Unless you take special action, when
you create a new file it is made in your current directory. Since this is initially
your home directory, the file is unrelated to a file of the same name that might
exist in someone else’s directory.

A directory can contain other directories as well as ordinary files (“‘Great
directories have lesser directories ...””). The natural way to picture this organi-
zation is as a tree of directories and files. It is possible to move around within
this tree, and to find any file in the system by starting at the root of the tree
and moving along the proper branches. Conversely, you can start where you
are and move toward the root.

Let’s try the latter first. Our basic tool is the command pwd (“print work-
ing directory’’), which prints the name of the directory you are currently in:
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Table 1.1:

1s

1s filenames
1ls -t

1ls -1

1ls -u

ls -r

ed filename
cp filel file2
mv filel file2
rm filenames

cat filenames
pr filenames
pr -n filenames
pr -m filenames

wc filenames

wc -1 filenames
grep pattern filenames
grep -v pattern files

sort filenames
tail filename
tail -n filename
tail +n filename

cmp filel file2
diff filel file2

Common File System Commands

list names of all files in current directory

list only the named files

list in time order, most recent first.

'ist long: more information; also 1s -1t

list by time last used; also 1s -1u, 1s -lut
iist in reverse order; also -rt, -rlt, etc.

edit named file

copy filel to file2, overwrite old file2 if it exists
move filel to file2, overwrite old file2 if it exists
remove named files, irrevocably

print contents of named files

print contents with header, 66 lines per page
print in n columns

print named files side by side (multirzle columns)

count lines, words and characters for each file
count lines for each file

print lines matching pattern

print lines not matching pattern

sort files alphabetically by line
print last 10 lines of file

print last n lines of file

start printing file at line n

print location of first difference
print all differences between files

$ pwd
/usr/you
$

This says that you are currently in the directory you, in the directory usr,
which in turn is in the root directory, which is conventionally called just ‘/’.
The / characters separate the components of the name; the limit of 14 charac-

ters mentioned above applies to each component of such a name. On many

systems, /usr is a directory that contains the directories of all the normal
users of the system. (Even if your home directory is not /usr/you, pwd will

below.)

If you now type

print something analogous, so you should be able to follow what happens
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$ 1s /usr/you

you should get exactly the same list of file names as you get from a plain 1s.
When no arguments are provided, 1ls lists the contents of the current direc-
tory; given the name of a directory, it lists the contents of that directory.

Next, try

$ 1s Susr

This should print a long series of names, among which is your own login direc-
tory you.

The next step is to try listing the root itself. You should get a response
similar to this:

$ 1s /
bin
boot
dev
etc
1lib
tmp
unix
usr

$

(Don’t be confused by the two meanings of /: it’s both the name of the root
and a separator in filenames.) Most of these are directories, but unix is actu-
ally a file containing the executable form of the UNIX kernel. More on this in
Chapter 2.

Now try

$ cat /usr/you/junk
(if junk is still in your directory). The name
/usr/you/ junk

is called the pathname of the file. ‘“‘Pathname” has an intuitive meaning: it
represents the full name of the path from the root through the tree of direc-
tories to a particular file. It is a universal rule in the UNIX system that wher-
ever you can use an ordinary filename, you can use a pathname.

The file system is structured like a genealogical tree; here is a picture that
may make it clearer. '
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/

you mike paul

/ N\

junk junk temp junk data

\

tmp unix boot

Your file named junk is unrelated to Paul’s or to Mary’s.

Pathnames aren’t too exciting if all the files of interest are in your own
directory, but if you work with someone else or on several projects con-
currently, they become handy indeed. For example, your friends can print
your junk by saying

$ cat /usr/you/junk

Similarly, you can find out what files Mary has by saying

$ 1ls /usr/mary
data

junk

$

or make your own copy of one of her files by

$ cp /usr/mary/data data

or edit her file:

$ ed /usr/mary/data

If Mary doesn’t want you poking around in her files, or vice versa, privacy
can be arranged. Each file and directory has read-write-execute permissions
for the owner, a group, and everyone else, which can be used to control access.
(Recall 1s -1.) In our local systems, most users most of the time find open-
ness of more benefit than privacy, but policy may be different on your system,
so we’ll get back to this in Chapter 2.

As a final set of experiments with pathnames, try

$ ls /bin /usr/bin

Do some of the names look familiar? When you run a command by typing its
name after the prompt, the system looks for a file of that name. It normally
looks first in your current directory (where it probably doesn’t find it), then in
/bin, and finally in /usr/bin. There is nothing special about commands
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like cat or 1s, except that they have been collected into a couple of direc-
tories to be easy to find and administer. To verify this, try to execute some of
these programs by using their full pathnames:

$ /bin/date
Mon Sep 26 23:29:32 EDT 1983

$ /bin/who

srm tty1 Sep 26 22:20
cvw ~tty4 Sep 26 22:40
you tty5 Sep 26 23:04
$

Exercise 1-3. Try

$ ls /usr/games

and do whatever comes naturally. Things might be more fun outside of normal working
hours. O

Changing directory — cd

If you work regularly with Mary on information in her directory, you can
say “I want to work on Mary’s files instead of my own.” This is done by
changing your current directory with the cd command:

$ cd Susr/mary

Now when you use a filename (without /’s) as an argument to cat or pr, it
refers to the file in Mary’s directory. Changing directories doesn’t affect any
permissions associated with a file — if you couldn’t access a file from your
own directory, changing to another directory won’t alter that fact.

It is usually convenient to arrange your own files so that all the files related
to one thing are in a directory separate from other projects. For example, if
you want to write a book, you might want to keep all the text in a directory
called book. The command mkdir makes a new directory.

$ mkdir book Make a directory

$ cd book Go to it

$ pwd Make sure you're in the right place
/usr/you/book

Write the book (several minutes pass)

$ cd .. Move up one level in file system
$ pwd

/usxr/you

$

‘. .” refers to the parent of whatever directory you are currently in, the direc-

¢ 9

tory one level closer to the root. ‘.’ is a synonym for the current directory.

$ cd Return to home directory
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all by itself will take you back to your home directory, the directory where you
log in.

Once your book is published, you can clean up the files. To remove the
directory book, remove all the files in it (we’ll show a fast way shortly), then
cd to the parent directory of book and type

$ rmdir book

rmdir will only remove an empty directory.

1.4 The shell

When the system prints the prompt $ and you type commands that get exe-
cuted, it’s not the kernel that is talking to you, but a go-between called the
command interpreter or shell. The shell is just an ordinary program like date
or who, although it can do some remarkable things. The fact that the shell sits
between you and the facilities of the kernel has real benefits, some of which
we’ll talk about here. There are three main ones:

e Filename shorthands: you can pick up a whole set of filenames as argu-
ments to a program by specifying a pattern for the names — the shell will
find the filenames that match your pattern.

e Input-output redirection: you can arrange for the output of any program to
go into a file instead of onto the terminal, and for the input to come from a
file instead of the terminal. Input and output can even be connected to
other programs.

e Personalizing the environment: you can define your own commands and
shorthands.

Filename shorthand

Let’s begin with filename patterns. Suppose you’re typing a large document
like a book. Logically this divides into many small pieces, like chapters and
perhaps sections. Physically it should be divided too, because it is cuambersome
to edit large files. Thus you should type the document as a number of files.
You might have separate files for each chapter, called ch1, ch2, etc. Or, if
each chapter were broken into sections, you might create files called

ch1.1
ch1.2
ch1.3

ch2.1
ch2.2
which is the organization we used for this book. With a systematic naming

convention, you can tell at a glance where a particular file fits into the whole.
What if you want to print the whole book? You could say
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$ pr ch1.1 ch1.2 ch1.3 ..

but you would soon get bored typing filenames and start to make mistakes.
This is where filename shorthand comes in. If you say

$ pr ch«

the shell takes the * to mean ‘‘any string of characters,” so ch* is a pattern
that matches all filenames in the current directory that begin with ch. The
shell creates the list, in alphabeticalt order, and passes the list to pr. The pr
command never sees the *; the pattern match that the shell does in the current
directory generates a list of strings that are passed to pr.

The crucial point is that filename shorthand is not a property of the pr
command, but a service of the shell. Thus you can use it to generate a
sequence of filenames for any command. For example, to count the words in
the first chapter:

$ we chl.=*
113 562 3200 ch1.0
935 4081 22435 ch1.1
974 4191 22756 ch1.2
378 1561 8481 ch1.3
1293 5298 28841 ch1.4
33 194 1190 ch1.5
75 323 2030 ch1.6
3801 16210 88933 total

$

There is a program called echo that is especially valuable for experiment-
ing with the meaning of the shorthand characters. As you might guess, echo
does nothing more than echo its arguments:

$ echo hello world
hello world
$

But the arguments can be generated by pattern-matching:
$ echo chil.»

lists the names of all the files in Chapter 1,
$ echo =

lists all the filenames in the current directory in alphabetical order,
$ pr =

prints all your files (in alphabetical order), and

+ Again, the order is not strictly alphabetical, in that upper case letters come before lower case
letters. See ascii(7) for the ordering of the characters used in the sort.
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$ rm *

removes all files in your current directory. (You had better be very sure that’s
what you wanted to say!)

The # is not limited to the last position in a filename — *’s can be any-
where and can occur several times. Thus

$ rm *.save

removes all files that end with .save.

Notice that the filenames are sorted alphabetically, which is not the same as
numerically. If your book has ten chapters, the order might not be what you
intended, since ch10 comes before ch2:

$ echo =*
ch1.1 ¢ch1.2 ... ch10.1 ch10.2 ... ch2.1 ch2.2 ...
$

The # is not the only pattern-matching feature provided by the shell,
although it’s by far the most frequently used. The pattern [...] matches any
of the characters inside the brackets. A range of consecutive letters or digits
can be abbreviated:

$ pr ch[12346789]% Print chapters 1,2,3,4,6,7,8,9 but not 5
$ pr ch[1-46-9]* Same thing
$ rm templa-z] Remove any of tempa, ..., tempz that exist

The ? pattern matches any single character:

$ 1s ? List files with single-character names
$ 1s -1 ch?.1 List ch1.1 ch2.1 ch3.1, etc. but not ch10.1
$ rm temp? Remove files temp1, ..., tempa, etc.

Note that the patterns match only existing filenames. In particular, you cannot
make up new filenames by using patterns. For example, if you want to expand
ch to chapter in each filename, you cannot do it this way:

$ mv ch.* chapter.=»* Doesn’t work!

because chapter .+ matches no existing filenames.

Pattern characters like * can be used in pathnames as well as simple
filenames; the match is done for each component of the path that contains a
special character. Thus /usr/mary/* performs the match in /usr/mary,
and /usr/*/calendar generates a list of pathnames of all user calendar
files.

If you should ever have to turn off the special meaning of *, ?, etc.,
enclose the entire argument in single quotes, as in

$ 1s ’?7

You can also precede a special character with a backslash:
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$ 1s \?

(Remember that because ? is not the erase or line kill character, this backslash
is interpreted by the shell, not by the kernel.) Quoting is treated at length in
Chapter 3.

Exercise 1-4. What are the differences among these commands?

$ 1s junk $ echo junk
$ 1s / $ echo /

$ 1s $ echo

$ 1s = $ echo »

$ 1s “»’ $ echo "’

[m}

Input-output redirection

Most of the commands we have seen so far produce output on the terminal;
some, like the editor, also take their input from the terminal. It is nearly
universal that the terminal can be replaced by a file for either or both of input
and output. As one example,

$ 1s

makes a list of filenames on your terminal. But if you say

$ 1s >filelist

that same list of filenames will be placed in the file filelist instead. The
symbol > means ‘‘put the output in the following file, rather than on the termi-
nal.” The file will be created if it doesn’t already exist, or the previous con-
tents overwritten if it does. Nothing is produced on your terminal. As
another example, you can combine several files into one by capturing the out-
put of cat in a file:

$ cat f1 f2 £f3 >temp

The symbol >> operates much as > does, except that it means “‘add to the
end of.” That is,

$ cat £1 £2 £3 >>temp

copies the contents of £1, £2 and £3 onto the end of whatever is already in
temp, instead of overwriting the existing contents. As with >, if temp doesn’t
exist, it will be created initially empty for you.

In a similar way, the symbol < means to take the input for a program from
the following file, instead of from the terminal. Thus, you can prepare a lettes
in file 1et, then send it to several people with

$ mail mary joe tom bob <let

In all of these examples, blanks are optional on either side of > or <, but ou
formatting is traditional.
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Given the capability of redirecting output with >, it becomes possible to
combine commands to achieve effects not possible otherwise. For example, to
print an alphabetical list of users,

$ who >temp
$ sort <temp

Since who prints one line of output per logged-on user, and wc -1 counts lines
(suppressing the word and character counts), you can count users with

$ who >temp
$ wc -1 <temp

You can count the files in the current directory with

$ 1s >temp
$ wc -1 <temp

though this includes the filename temp itself in the count. You can print the
filenames in three columns with

$ 1s >temp
$ pr -3 <temp

And you can see if a particular user is logged on by combining who and grep:

$ who >temp
$ grep mary <temp

In all of these examples, as with filename pattern characters like *, it’s
important to remember that the interpretation of > and < is being done by the
shell, not by the individual programs. Centralizing the facility in the shell
means that input and output redirection can be used with any program; the
program itself isn’t aware that something unusual has happened.

This brings up an important convention. The command

$ sort <temp
sorts the contents of the file temp, as does

$ sort temp

but there is a difference. Because the string <temp is interpreted by the shell,
sort does not see the filename temp as an argument; it instead sorts its stan-
dard input, which the shell has redirected so it comes from the file. The latter
example, however, passes the name temp as an argument to sort, which
reads the file and sorts it. sort can be given a list of filenames, as in

$ sort templ1 temp2 temp3

but if no filenames are given, it sorts its standard input. This is an essential
property of most commands: if no filenames are specified, the standard input is
processed. This means that you can simply type at commands to see how they
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work. For example,

$ sort
ghi
abc
def
ctl-d
abc
def
ghi

$

In the next section, we will see how this principle is exploited.
Exercise 1-5. Explain why
$ 1s >1s.out

causes 1s.out to be included in the list of names. O
Exercise 1-6. Explain the output from

$ wc temp >temp
If you misspell a command name, as in
$ woh >temp

what happens? O

Pipes

All of the examples at the end of the previous section rely on the same
trick: putting the output of one program into the input of another via a tem-
porary file. But the temporary file has no other purpose; indeed, it’s clumsy to
have to use such a file. This observation leads to one of the fundamental con-
tributions of the UNIX system, the idea of a pipe. A pipe is a way to connect
the output of one program to the input of another program without any tem-
porary file; a pipeline is a connection of two or more programs through pipes.

Let us revise some of the earlier examples to use pipes instead of tem-
poraries. The vertical bar character | tells the shell to set up a pipeline:

$ who | sort Print sorted list of users
$ who | wc -1 Count users

$ 1s | wec -1 Count files

$ 1s | pr -3 3-column list of filenames
$ who / grep mary Look for particular user

Any program that reads from the terminal can read from a pipe instead;
any program that writes on the terminal can write to a pipe. This is where the
convention of reading the standard input when no files are named pays off: any
program that adheres to the convention can be used in pipelines. grep, pr,
sort and wc are all used that way in the pipelines above.

You can have as many programs in a pipeline as you wish:
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1

$ 1s | pr -3 | 1pr

creates a 3-column list of filenames on the line printer, and

$ who !/ grep mary { wc -1

counts how many times Mary is logged in.

The programs in a pipeline actually run at the same time, not one after
another. This means that the programs in a pipeline can be interactive; the
kernel looks after whatever scheduling and synchronization is needed to make
it all work.

As you probably suspect by now, the shell arranges things when you ask for
a pipe; the individual programs are oblivious to the redirection. Of course,
programs have to operate sensibly if they are to be combined this way. Most
commands follow a common design, so they will fit properly into pipelines at
any position. Normally a command invocation looks like

command optional-arguments optional-filenames

If no filenames are given, the command reads its standard input, which is by
default the terminal (handy for experimenting) but which can be redirected to
come from a file or a pipe. At the same time, on the output side, most com-
mands write their output on the standard output, which is by default sent to the
terminal. But it too can be redirected to a file or a pipe.

Error messages from commands have to be handled differently, however,
or they might disappear into a file or down a pipe. So each command has a
standard error output as well, which is normally directed to your terminal.
Or, as a picture:

standard input command, standard
or files options output
standard
error

Almost all of the commands we have talked about so far fit this model; the
only exceptions are commands like date and who that read no input, and a
few like cmp and diff that have a fixed number of file inputs. (But look at
the ‘-’ option on these.)

Exercise 1-7. Explain the difference between

$ who | sort

and
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$ who >sort

[m]

Processes

The shell does quite a few things besides setting up pipes. Let us turn
briefly to the basics of running more than one program at a time, since we
have already seen a bit of that with pipes. For example, you can run two pro-
grams with one command line by separating the commands with a semicolon;
the shell recognizes the semicolon and breaks the line into two commands:

$ date; who
Tue Sep 27 01:03:17 EDT 1983

ken tty0 Sep 27 00:43
dmr tty1 Sep 26 23:45
rob tty2 Sep 26 23:59
bwk tty3 Sep 27 00:06
33 tty4 Sep 26 23:31
you tty5 Sep 26 23:04
ber tty7 Sep 26 23:34
$

Both commands are executed (in sequence) before the shell returns with a
prompt character.

You can also have more than one program running simultaneously if you
wish. For example, suppose you want to do something time-consuming like
counting the words in your book, but you don’t want to wait for we to finish
before you start something else. Then you can say

$ wc ch* >wc.out &
6944 Process-id printed by the shell
$

The ampersand & at the end of a command line says to the shell “‘start this
command running, then take further commands from the terminal immedi-
ately,” that is, don’t wait for it to complete. Thus the command will begin,
but you can do something else while it’s running. Directing the output into the
file we.out keeps it from interfering with whatever you’re doing at the same
time.

An instance of a running program is called a process. The number printed
by the shell for a command initiated with & is called the process-id; you can
use it in other commands to refer to a specific running program.

It’s important to distinguish between programs and processes. wc is a pro-
gram; each time you run the program wc, that creates a new process. If
several instances of the same program are running at the same time, each is a
separate process with a different process-id.

If a pipeline is initiated with &, as in
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$ pr ch# | lpr &
6951 Process-id of 1pr
$

the processes in it are all started at once — the & applies to the whole pipeline.
Only one process-id is printed, however, for the last process in the sequence.
The command

$ wait

waits until all processes initiated with & have finished. If it doesn’t return
immediately, you have commands still running. You can interrupt wait with
DELETE.

You can use the process-id printed by the shell to stop a process initiated
with &:

$ kill 6944

If you forget the process-id, you can use the command ps to tell you abcut
everything you have running. If you are desperate, kill 0 will kill all your
processes except your login shell. And if you’re curious about what other users
are doing, ps -ag will tell you about all processes that are currently running.
Here is some sample output:

$ ps -ag
PID TTY TIME CMD

36 co 6:29 /etc/cron
6423 5 0:02 -sh
6704 1 0:04 -sh
6722 1 0:12 vi paper
4430 2 0:03 -sh
6612 7 0:03 -sh
6628 7 1:13 rogue
6843 2 0:02 write dmr
6949 4 0:01 login bimmler
6952 5 0:08 pr ch1.1 ch1.2 ch1.3 ch1.4
6951 5 0:03 1pr
6959 5 0:02 ps -ag
6844 1 0:02 write rob

$

PID is the process-id; TTY is the terminal associated with the process (as in
who); TIME is the processor time used in minutes and seconds; and the rest is
the command being run. ps is one of those commands that is different on dif-
ferent versions of the system, so your output may not be formatted like this.
Even the arguments may be different — see the manual page ps(1).

Processes have the same sort of hierarchical structure that files do: each
process has a parent, and may well have children. Your shell was created by a
process associated with whatever terminal line connects you to the system. As
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you run commands, those processes are the direct children of your shell. If
you run a program from within one of those, for example with the ! command
to escape from ed, that creates its own child process which is thus a grandchild
of the shell.

Sometimes a process takes so long that you would like to start it running,
then turn off the terminal and go home without waiting for it to finish. But if
you turn off your terminal or break your connection, the process will normally
be killed even if you used & The command nohup (‘“no hangup”) was
created to deal with this situation: if you say

$ nohup command &

the command will continue to run if you log out. Any output from the com-
mand is saved in a file called nohup.out. There is no way to nohup a com-
mand retroactively.

If your process will take a lot of processor resources, it is kind to those who
share your system to run your job with lower than normal priority; this is done
by another program called nice:

$ nice expensive-command &

nohup automatically calls nice, because if you’re going to log out you can
afford to have the command take a little longer.

Finally, you can simply tell the system to start your process at some wee
hour of the morning when normal people are asleep, not computing. The com-
mand is called at(1):

$ at time
whatever commands
you want ...

ctl-d

$

This is the typical usage, but of course the commands could come from a file:

$ at 3am <file
$

Times can be written in 24-hour style like 2130, or 12-hour style like 930pm.

Tailoring the environment

One of the virtues of the UNIX system is that there are several ways to bring
it closer to your personal taste or the conventions of your local computing
environment. For example, we mentioned earlier the problem of different
standards for the erase and line kill characters, which by default are usually #
and @. You can change these any time you want with

$ stty erase e kill k

where e is whatever character you want for erase and k is for line kill. But it’s
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a bother to have to type this every time you log in.

The shell comes to the rescue. If there is a file named .profile in your
login directory, the shell will execute the commands in it when you log in,
before printing the first prompt. So you can put commands into .profile to
set up your environment as you like it, and they will be executed every time
you log in.

The first thing most people put in their .profile is

stty erase «

We're using « here so you can see it, but you could put a literal backspace in
your .profile. stty also understands the notation “x for ctl-x, so you can
get the same effect with

stty erase ’““h’

because ctl-h is backspace. (The "~ character is an obsolete synonym for the
pipe operator i, so you must protect it with quotes.)

If your terminal doesn’t have sensible tab stops, you can add -tabs to the
stty line:

stty erase ‘"“h’ -tabs

If you like to see how busy the system is when you log in, add

who | wec -1

to count the users. If there’s a news service, you can add news. Some people
like a fortune cookie:

/usr/games/fortune

After a while you may decide that it is taking too long to log in, and cut your
.profile back to the bare necessities.

Some of the properties of the shell are actually controlled by so-called shell
variables, with values that you can access and set yourself. For example, the
prompt string, which we have been showing as $, is actually stored in a shell
variable called PS1, and you can set it to anything you like, like this:

PS1='Yes dear? ’

The quotes are necessary since there are spaces in the prompt string. Spaces
are not permitted around the = in this construction.

The shell also treats the variables HOME and MAIL specially. HOME is the
name of your home directory; it is normally set properly without having to be
in .profile. The variable MAIL names the standard file where your mail is
kept. If you define it for the shell, you will be notified after each command if
new mail has arrived:T

T This is implemented badly in the shell. Looking at the file after every command adds perceptibly
to the system load. Also, if you are working in an editor for a long time you won’t learn about
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MAIL=/usr/spool/mail/you

(The mail file may be different on your system; /usr/mail/you is also com-
mon.)

Probably the most useful shell variable is the one that controls where the
shell looks for commands. Recall that when you type the name of a command,
the shell normally looks for it first in the current directory, then in /bin, and
then in /usr/bin. This sequence of directories is called the search path, and
is stored in a shell variable called PATH. If the default search path isn’t what
you want, you can change it, again usually in your .profile. For example,
this line sets the path to the standard one plus /usr/games:

PATH=. :/bin:/usr/bin:/usr/games One way ...

The syntax is a bit strange: a sequence of directory names separated by colons.
Remember that ‘.’ is the current directory. You can omit the ‘.’; a null com-
ponent in PATH means the current directory.

An alternate way to set PATH in this specific case is simply to augment the
previous value:

PATH=$PATH: /usr/games ... Another way

You can obtain the value of any shell variable by prefixing its name with a $.
In the example above, the expression $PATH retrieves the current value, to
which the new part is added, and the result is assigned back to PATH. You can
verify this with echo:

$ echo PATH is $PATH

PATH is :/bin:/usr/bin:/usr/games

$ echo $HOME Your login directory
/usr/you

$

If you have some of your own commands, you might want to collect them
in a directory of your own and add that to your search path as well. In that
case, your PATH might look like this:

PATH=:$HOME/bin:/bin:/usr/bin:/usr/games

We’ll talk about writing your own commands in Chapter 3.

Another variable, often used by text editors fancier than ed, is TERM,
which names the kind of terminal you are using. That information may make
it possible for programs to manage your screen more effectively. Thus you
might add something like

new mail because you aren’t running new commands with your login shell A better design is to
look every few minutes, instead of after every command. Chapters 5 and 7 show how to imple-
ment this kind of mail checker. A third possibility, not available to everyone, is to have the mail
program notify you itself: it certainly knows when mail comes for you.
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TERM=adm3

to your .profile file.

It is also possible to use variables for abbreviation. If you find yourself fre-
quently referring to some directory with a long name, it might be worthwhile
adding a line like

d=/horribly/long/directory/name

to your profile, so that you can say things like
$ cd $d

Personal variables like d are conventionally spelled in lower case to distinguish
them from those used by the shell itself, like PATH.

Finally, it’s necessary to tell the shell that you intend to use the variables in
other programs; this is done with the command export, to which we will
return in Chapter 3:

export MAIL PATH TERM

To summarize, here is what a typical .profile file might look like:

$ cat .profile

stty erase ‘"“h’ -tabs
MAIL=/usr/spool/mail/you
PATH=:$HOME/bin:/bin:/usr/bin:/usr/games
TERM=adm3

b=$HOME/book

export MAIL PATH TERM b

date

who | we -1

$

We have by no means exhausted the services that the shell provides. One
of the most useful is that you can create your own commands by packaging
existing commands into a file to be processed by the shell. It is remarkable
how much can be achieved by this fundamentally simple mechanism. Our dis-
cussion of it begins in Chapter 3.

1.5 The rest of the UNIX system

There’s much more to the UNIX system than we’ve addressed in this
chapter, but then there’s much more to this book. By now, you should feel
comfortable with the system and, particularly, with the manual. When you
have specific questions about when or how to use commands, the manual is the
place to look.

It is also worth browsing in the manual occasionally, to refresh your
knowledge of familiar commands and to discover new ones. The manual
describes many programs we won'’t illustrate, including compilers for languages



CHAPTER 1 UNIX FOR BEGINNERS 39

like FORTRAN 77; calculator programs such as be(1); cu(l) and uucp(1l) for
inter-machine communication; graphics packages; statistics programs; and eso-
terica such as units(1).

As we’ve said before, this book does not replace the manual, it supplements
it. In the chapters that follow we will look at pieces and programs of the UNIX
system, starting from the information in the manual but following the threads
that connect the components. Although the program interrelationships are
never made explicit in the manual, they form the fabric of the UNIX program-
ming environment.

History and bibliographic notes

The original UNIX paper is by D. M. Ritchie and K. L. Thompson: ‘“The
UNIX Time-sharing System,” Communications of the ACM, July, 1974, and
reprinted in CACM, January, 1983. (Page 89 of the reprint is in the March
1983 issue.) This overview of the system for people interested in operating
systems is worth reading by anyone who programs.

The Bell System Technical Journal (BSTJ) special issue on the UNIX system
(July, 1978) contains many papers describing subsequent developments, and
some retrospective material, including an update of the original CACM paper
by Ritchie and Thompson. A second special issue of the BSTJ, containing new
UNIX papers, is scheduled to be published in 1984.

“The UNIX Programming Environment,”” by B. W. Kernighan and J. R.
Mashey (IEEE Computer Magazine, April, 1981), attempts to convey the essen-
tial features of the system for programmers.

The UNIX Programmer’s Manual, in whatever version is appropriate for your
system, lists commands, system routines and interfaces, file formats, and
maintenance procedures. You can’t live without this for long, although you
will probably only need to read parts of Volume 1 until you start program-
ming. Volume 1 of the 7th Edition manual is published by Holt, Rinehart and
Winston.

Volume 2 of the UNIX Programmer’s Manual is called “‘Documents for Use
with the UNIX Time-sharing System’ and contains tutorials and reference
manuals for major commands. In particular, it describes document preparation
programs and program development tools at some length. You will want to
read most of this eventually.

A UNIX Primer, by Ann and Nico Lomuto (Prentice-Hall, 1983), is a good
introduction for raw beginners, especially non-programmers.






CHAPTER 2. THE FILE SYSTEM

Everything in the UNIX system is a file. That is less of an oversimplifica-
tion than you might think. When the first version of the system was being
designed, before it even had a name, the discussions focused on the structure
of a file system that would be clean and easy to use. The file system is central
to the success and convenience of the UNIX system. It is one of the best exam-
ples of the “keep it simple” philosophy, showing the power achieved by careful
implementation of a few well-chosen ideas.

To talk comfortably about commands and their interrelationships, we need
a good background in the structure and outer workings of the file system. This
chapter covers most of the details of using the file system — what files are,
how they are represented, directories and the file system hierarchy, permis-
sions, inodes (the system’s internal record of files) and device files. Because
most use of the UNIX system deals with manipulating files, there are many
commands for file investigation or rearrangement; this chapter introduces the
more commonly used ones.

2.1 The basics of files

A file is a sequence of bytes. (A byte is a small chunk of information, typi-
cally 8 bits long. For our purposes, a byte is equivalent to a character.) No
structure is imposed on a file by the system, and no meaning is attached to its
contents — the meaning of the bytes depends solely on the programs that inter-
pret the file. Furthermore, as we shall see, this is true not just of disc files but
of peripheral devices as well. Magnetic tapes, mail messages, characters typed
on the keyboard, line printer output, data flowing in pipes — each of these
files is just a sequence of bytes as far as the system and the programs in it are
concerned.

The best way to learn about files is to play with them, so start by creating a
small file:

41
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$ ed

a

now is the time
for all good people

w junk :

36

q

$ 1s -1 junk

-rw-r--r-- 1 you 36 Sep 27 06:11 junk
$

junk is a file with 36 bytes — the 36 characters you typed while appending
(except, of course, for correction of any typing mistakes). To see the file,

$ cat junk

now is the time
for all good people
$

cat shows what the file looks like. The command od (octal dump) prints a
visible representation of all the bytes of a file:

$ od ~c junk

0000000 n o \ i s t h e t i m e \n
0000020 £ o
0000040 o) 1 e \n
0000044

$

L2}
-
-
Q
o
o
[N
‘o
]
o

)

The -c option means ‘“‘interpret bytes as characters.” Turning on the -b
option will show the bytes as octal (base 8) numberst as well:

$ od -cb junk

0000000 n o w i s t h e t i m e \n
156 157 167 040 151 163 040 164 150 145 040 164 151 155 145 012
0000020 £ o r a 1 1 g o o d P e o

146 157 162 040 141 154 154 040 147 157 157 144 040 160 145 157
0000040 P 1 e \n

160 154 145 012
0000044
$

The 7-digit numbers down the left side are positions in the file, that is, the

+ Each byte in a file contains a number large enough to encode a printable character. The encod-
ing on most UNIX systems is called ASCII (American Standard Code for Information Interchange),
but some machines, particularly those manufactured by IBM, use an encoding called EBCDIC (Ex-
tended Binary-Coded-Decimal Interchange Code). Throughout this book, we will assume the ASCII
encoding; cat /usr/pub/ascii or read ascii(7) to see the octal values of all the characters.
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ordinal number of the next character shown, in octal. By the way, the
emphasis on octal numbers is a holdover from the PDP-11, for which octal was
the preferred notation. Hexadecimal is better suited for other machines; the
-x option tells od to print in hex.

Notice that there is a character after each line, with octal value 012. This
is the ASCII newline character; it is what the system places in the input when
you press the RETURN key. By a convention borrowed from C, the character
representation of a newline is \n, but this is only a convention used by pro-
grams like od to make it easy to read — the value stored in the file is the sin-
gle byte 012.

Newline is the most common example of a special character. Other charac-
ters associated with some terminal control operation include backspace (octal
value 010, printed as \b), tab (011, \t), and carriage return (015, \r).

It is important in each case to distinguish between how the character is
stored in a file and how it is interpreted in various situations. For example,
when you type a backspace on your keyboard (and assuming that your erase
character is backspace), the kernel interprets it to mean that you want to dis-
card whatever character you typed previously. Both that character and the
backspace disappear, but the backspace is echoed to your terminal, where it
makes the cursor move one position backwards.

If you type the sequence

\«

(i.e., \ followed by a backspace), however, the kernel interprets that to mean
that you want a literal backspace in your input, so the \ is discarded and the
byte 010 winds up in your file. When the backspace is echoed on your termi-
nal, it moves the cursor to sit on top of the \.

When you print a file that contains a backspace, the backspace is passed
uninterpreted to your terminal, which again will move the cursor one position
backwards. When you use od to display a file that contains a backspace, it
appears as a byte with value 010, or, with the -c option, as \b.

The story for tabs is much the same: on input, a tab character is echoed to
your terminal and sent to the program that is reading; on output, the tab is
simply sent to the terminal for interpretation there. There is a difference,
though — you can tell the kernel that you want iz to interpret tabs for you on
output; in that case, each tab that would be printed is replaced by the right
number of blanks to get to the next tab stop. Tab stops are set at columns 9,
17, 25, etc. The command

$ stty -tabs
causes tabs to be replaced by spaces when printed on your terminal. See
stty(1).
The treatment of RETURN is analogous. The kernel echoes RETURN as a
carriage return and a newline, but stores only the newline in the input. On
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output, the newline is expanded into carriage return and newline.

The UNIX system is unusual in its approach to representing control informa-
tion, particularly its use of newlines to terminate lines. Many systems instead
provide ‘‘records,” one per line, each of which contains not only your data but
also a count of the number of characters in the line (and no newline). Other
systems terminate each line with a carriage return and a newline, because that
sequence is necessary for output on most terminals. (The word ‘“linefeed” is a
synonym for newline, so this sequence is often called ‘“‘CRLF,”” which is nearly
pronounceable.)

The UNIX system does neither — there are no records, no record counts,
and no bytes in any file that you or your programs did not put there. A new-
line is expanded into a carriage return and a newline when sent to a terminal,
but programs need only deal with the single newline character, because that is
all they see. For most purposes, this simple scheme is exactly what is wanted.
When a more complicated structure is needed, it can easily be built on top of
this; the converse, creating simplicity from complexity, is harder to achieve.

Since the end of a line is marked by a newline character, you might expect
a file to be terminated by another special character, say \e for “end of file.”
Looking at the output of od, though, you will see no special character at the
end of the file — it just stops. Rather than using a special code, the system
signifies the end of a file by simply saying there is no more data in the file.
The kernel keeps track of file lengths, so a program encounters end-of-file
when it has processed all the bytes in a file.

Programs retrieve the data in a file by a system call (a subroutine in the
kernel) called read. Each time read is called, it returns the next part of a
file — the next line of text typed on the terminal, for example. read also says
how many bytes of the file were returned, so end of file is assumed when a
read says ‘“‘zero bytes are being returned.” If there were any bytes left, read
would have returned some of them. Actually, it makes sense not to represent
end of file by a special byte value, because, as we said earlier, the meaning of
the bytes depends on the interpretation of the file. But all files must end, and
since all files must be accessed through read, returning zero is an
interpretation-independent way to represent the end of a file without introduc-
ing a new special character.

When a program reads from your terminal, each input line is given to the
program by the kernel only when you type its newline (i.e, press RETURN).
Therefore if you make a typing mistake, you can back up and correct it if you
realize the mistake before you type newline. If you type newline before realiz-
ing the error, the line has been read by the system and you cannot correct it.

We can see how this line-at-a-time input works using cat. cat normally
saves up or buffers its output to write in large chunks for efficiency, but cat
-u “‘unbuffers’ the output, so it is printed immediately as it is read:
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$ cat Buffered output from cat
123

456

789

ctl-d

123

456

789

$ cat -u Unbuffered output from cat
123

123

456

456

789

789

ctl-d

$

cat receives each line when you press RETURN; without buffering, it prints
the data as it is received.

Now try something different: type some characters and then a czl-d rather
than a RETURN:

$ cat -u
123ctl-d123

cat prints the characters out immediately. ctl-d says, ‘‘immediately send the
characters I have typed to the program that is reading from my terminal.” The
ctl-d itself is not sent to the program, unlike a newline. Now type a second
ctl-d, with no other characters:

$ cat -u
123ctl-d123ctl-d$

The shell responds with a prompt, because cat read no characters, decided
that meant end of file, and stopped. ct/-d sends whatever you have typed to
the program that is reading from the terminal. If you haven’t typed anything,
the program will therefore read no characters, and that looks like the end of
the file. That is why typing czl-d logs you out — the shell sees no more input.
Of course, ctl-d is usually used to signal an end-of-file but it is interesting that
it has a more general function.

Exercise 2-1. What happens when you type ctl-d to ed? Compare this to the command

$ ed <file
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2.2 What’s in a file?

The format of a file is determined by the programs that use it; there is a
wide variety of file types, perhaps because there is a wide variety of programs.
But since file types are not determined by the file system, the kernel can’t tell
you the type of a file: it doesn’t know it. The file command makes an edu-
cated guess (we’ll explain how shortly):

$ file /bin /bin/ed /usr/src/cmd/ed.c /usr/man/mani/ed.1

/bin: directory

/bin/ed: pure executable

/usr/src/cmd/ed.c: c program text
/usr/man/mani/ed. 1: roff, nroff, or eqn input text
$

These are four fairly typical files, all related to the editor: the directory in
which it resides (/bin), the “binary” or runnable program itself (/bin/ed),
the “‘source” or C statements that define the program (/usr/src/cmd/ed.c)
and the manual page (/usr/man/man1/ed. 1).

To determine the types, £ile didn’t pay attention to the names (although it
could have), because naming conventions are just conventions, and thus not
perfectly reliable. For example, files suffixed .c are almost always C source,
but there is nothing to prevent you from creating a .c file with arbitrary con-
tents. Instead, file reads the first few hundred bytes of a file and looks for
clues to the file type. (As we will show later on, files with special system pro-
perties, such as directories, can be identified by asking the system, but file
could identify a directory by reading it.)

Sometimes the clues are obvious. A runnable program is marked by a
binary ‘“magic number” at its beginning. od with no options dumps the file in
16-bit, or 2-byte, words and makes the magic number visible:

$ od /bin/ed

0000000 000410 025000 000462 011444 000000 000000 000000 000001
0000020 170011 016600 000002 005060 177776 010600 162706 000004
0000040 016616 000004 005720 010066 000002 005720 001376 020076

$
The octal value 410 marks a pure executable program, one for which the exe-
cuting code may be shared by several processes. (Specific magic numbers are
system dependent.) The bit pattern represented by 410 is not ASCII text, so
this value could not be created inadvertently by a program like an editor. But
you could certainly create such a file by running a program of your own, and
the system understands the convention that such files are program binaries.

For text files, the clues may be deeper in the file, so file looks for words
like #include to identify C source, or lines beginning with a period to iden-
tify nroff or troff input.

You might wonder why the system doesn’t track file types more carefully,
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so that, for example, sort is never given /bin/ed as input. One reason is to
avoid foreclosing some useful computation. Although

$ sort /bin/ed

doesn’t make much sense, there are many commands that can operate on any
file at all, and there’s no reason to restrict their capabilities. od, wc, cp, cmp,
file and many others process files regardless of their contents. But the for-
matless idea goes deeper than that. If, say, nroff input were distinguished
from C source, the editor would be forced to make the distinction when it
created a file, and probably when it read in a file for editing again. And it
would certainly make it harder for us to typeset the C programs in Chapters 6
through 8!

Instead of creating distinctions, the UNIX system tries to efface them. All
text consists of lines terminated by newline characters, and most programs
understand this simple format. Many times while writing this book, we ran
commands to create text files, processed them with commands like those listed
above, and used an editor to merge them into the troff input for the book.
The transcripts you see on almost every page are made by commands like

$ od -c junk >temp
$ ed ch2.1

1534

r temp

168

od produces text on its standard output, which can then be used anywhere text
can be used. This uniformity is unusual, most systems have several file for-
mats, even for text, and require negotiation by a program or a user to create a
file of a particular type. In UNIX systems there is just one kind of file, and all
that is required to access a file is its name. T

The lack of file formats is an advantage overall — programmers needn’t
worry about file types, and all the standard programs will work on any file —
but there are a handful of drawbacks. Programs that sort and search and edit
really expect text as input: grep can’t examine binary files correctly, nor can
sort sort them, nor can any standard editor manipulate them.

There are implementation limitations with most programs that expect text as
input. We tested a number of programs on a 30,000 byte text file containing
no newlines, and surprisingly few behaved properly, because most programs
make unadvertised assumptions about the maximum length of a line of text
(for an exception, see the BUGS section of sort(1)).

+ There’s a good test of file system uniformity, due originally to Doug Mcllroy, that the uNIx file
system passes handily. Can the output of a FORTRAN program be used as input to the FORTRAN
compiler? A remarkable number of systems have trouble with this test
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Non-text files definitely have their place. For example, very large data-
bases usually need extra address information for rapid access; this has to be
binary for efficiency. But every file format that is not text must have its own
family of support programs to do things that the standard tools could perform
if the format were text. Text files may be a little less efficient in machine
cycles, but this must be balanced against the cost of extra software to maintain
more specialized formats. If you design a file format, you should think care-
fully before choosing a non-textual representation. (You should also think
about making your programs robust in the face of long input lines.)

2.3 Directories and filenames

All the files you own have unambiguous names, starting with /usr/you,
but if the only file you have is junk, and you type 1ls, it doesn’t print
/usr/you/junk; the filename is printed without any prefix:

$ 1s
junk
$

That is because each running program, that is, each process, has a current
directory, and all filenames are implicitly assumed to start with the name of
that directory, unless they begin directly with a slash. Your login shell, and
1s, therefore have a current directory. The command pwd (print working
directory) identifies the current directory:

$ pwd
/usr/you
$

The current directory is an attribute of a process, not a person or a program
— people have login directories, processes have current directories. If a pro-
cess creates a child process, the child inherits the current directory of its
parent. But if the child then changes to a new directory, the parent is unaf-
fected — its current directory remains the same no matter what the child does.

The notion of a current directory is certainly a notational convenience,
because it can save a lot of typing, but its real purpose is organizational.
Related files belong together in the same directory. /usr is often the top
directory of the user file system. (user is abbreviated to usr in the same
spirit as cmp, 1s, etc.) /usr/you is your login directory, your current direc-
tory when you first log in. /usr/src contains source for system programs,
/usr/src/cmd contains source for UNIX commands, /usr/src/cmd/sh
contains the source files for the shell, and so on. Whenever you embark on a
new project, or whenever you have a set of related files, say a set of recipes,
you could create a new directory with mkdir and put the files there.
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$ pwd

/usx/you

$ mkdir recipes

$ cd recipes

$ pwd
/usr/you/recipes

$ mkdir pie cookie
$ ed pie/apple

$ ed cookie/choc.chip

$

Notice that it is simple to refer to subdirectories. pie/apple has an obvious
meaning: the apple pie recipe, in directory /usr/you/recipes/pie. You
could instead have put the recipe in, say, recipes/apple.pie, rather than
in a subdirectory of recipes, but it seems better organized to put all the pies
together, too. For example, the crust recipe could be kept in
recipes/pie/crust rather than duplicating it in each pie recipe.

Although the file system is a powerful organizational tool, you can forget
where you put a file, or even what files you’ve got. The obvious solution is a
command or two to rummage around in directories. The 1ls command is cer-
tainly helpful for finding files, but it doesn’t look in sub-directories.

$ cd

$ 1s

junk

recipes

$ file =*

junk: ascii text
recipes: directory
$ ls recipes
cookie

pie

$ 1s recipes/pie
apple

crust

$

This piece of the file system can be shown pictorially as:
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/usr/you
/
junk recipes
/
pie cookie
apple crust choc.chip

The command du (disc usage) was written to tell how much disc space is
consumed by the files in a directory, including all its subdirectories.

$ du

6 ./recipes/pie

4 ./recipes/cookie
11 ./recipes

13

$

The filenames are obvious; the numbers are the number of disc blocks — typi-
cally 512 or 1024 bytes each — of storage for each file. The value for a direc-
tory indicates how many blocks are consumed by all the files in that directory
and its subdirectories, including the directory itself.

du has an option -a, for “all,”” that causes it to print out all the files in a
directory. If one of those is a directory, du processes that as well:

Q,
]
1
[\

./recipes/pie/apple
./recipes/pie/crust
./recipes/pie
./recipes/cookie/choc.chip
./recipes/cookie

./recipes

./Jjunk

-

B WO WN @
w

The output of du -a can be piped through grep to look for specific files:

$ du -a / grep choc
3 ./recipes/cookie/choc.chip
$

Recall from Chapter 1 that the name ‘.’ is a directory entry that refers to the
directory itself; it permits access to a directory without having to know the full
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name. du looks in a directory for files; if you don’t tell it which directory, it
assumes °.’, the directory you are in now. Therefore, junk and ./junk are
names for the same file.

Despite their fundamental properties inside the kernel, directories sit in the
file system as ordinary files. They can be read as ordinary files. But they
can’t be created or written as ordinary files — to preserve its sanity and the
users’ files, the kernel reserves to itself all control over the contents of direc-
tories.

The time has come to look at the bytes in a directory:

$ od -cb .

0000000 4 H . N0 N0 NO NO NO NO NO NO NO NO NO NO O
064 073 056 000 000 000 000 000 000 000 000 000 000 000 000 000

0000020 273 ( . . N0 N0 NO NO NO NO NO NO NO NO NO O
273 050 056 056 000 000 000 000 000 000 000 000 000 000 000 000

0000040 252 H r e c i P e s N0 \NO N\O N\NO \O \O O
252 073 162 145 143 151 160 145 163 000 000 000 000 000 000 000

0000060 230 = 3j u n k N0 N0 N0 N\NO NO \NO NO NO NO O

230 075 152 165 156 153 000 000 000 000 000 000 000 000 000 000
0000100
$

See the filenames buried in there? The directory format is a combination of
binary and textual data. A directory consists of 16-byte chunks, the last 14
bytes of which hold the filename, padded with ASCII NUL’s (which have value
0) and the first two of which tell the system where the administrative informa-
tion for the file resides — we’ll come back to that. Every directory begins
with the two entries ‘.’ (““dot”) and ‘..’ (“dot-dot”).

$ cd Home

$ cd recipes

$ pwd

/usr/you/recipes

$ od ..; pwd Up one level
/usr/you

$ cod ..; pwd Up another level
/usr

$ cd ..; pwd Up another level
/

$ cd ..; pwd Up another level
/ Can’t go any higher
$

The directory / is called the root of the file system. Every file in the sys-
tem is in the root directory or one of its subdirectories, and the root is its own
parent directory.

Exercise 2-2. Given the information in this section, you should be able to understand
roughly how the 1s command operates. Hint: cat . >foo; 1ls -f foo. O
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Exercise 2-3. (Harder) How does the pwd command operate? O

Exercise 2-4. du was written to monitor disc usage. Using it to find files in a directory
hierarchy is at best a strange idiom, and perhaps inappropriate. As an alternative, look
at the manual page for £ind(1), and compare the two commands. In particular, com-
pare the command du -a | grep ... with the corresponding invocation of f£ind.
Which runs faster? Is it better to build a new tool or use a side effect of an old one? O

2.4 Permissions

Every file has a set of permissions associated with it, which determine who
can do what with the file. If you’re so organized that you keep your love
letters on the system, perhaps hierarchically arranged in a directory, you prob-
ably don’t want other people to be able to read them. You could therefore
change the permissions on each letter to frustrate gossip (or only on some of
the letters, to encourage it), or you might just change the permissions on the
directory containing the letters, and thwart snoopers that way.

But we must warn you: there is a special user on every UNIX system, called
the super-user, who can read or modify any file on the system. The special
login name root carries super-user privileges; it is used by system administra-
tors when they do system maintenance. There is also a command called su
that grants super-user status if you know the root password. Thus anyone
who knows the super-user password can read your love letters, so don’t keep
sensitive material in the file system.

If you need more privacy, you can change the data in a file so that even the
super-user cannot read (or at least understand) it, using the crypt command
(crypt(1)). Of course, even crypt isn’t perfectly secure. A super-user can
change the crypt command itself, and there are cryptographic attacks on the
crypt algorithm. The former requires malfeasance and the latter takes hard
work, however, so crypt is in practice fairly secure.

In real life, most security breaches are due to passwords that are given
away or easily guessed. Occasionally, system administrative lapses make it
possible for a malicious user to gain super-user permission. Security issues are
discussed further in some of the papers cited in the bibliography at the end of
this chapter.

When you log in, you type a name and then verify that you are that person
by typing a password. The name is your login identification, or login-id. But
the system actually recognizes you by a number, called your user-id, or uid. In
fact different login-id’s may have the same uid, making them indistinguishable
to the system, although that is relatively rare and perhaps undesirable for secu-
rity reasons. Besides a uid, you are assigned a group identification, or group-
id, which places you in a class of users. On many systems, all ordinary users
(as opposed to those with login-id’s like root) are placed in a single group
called other, but your system may be different. The file system, and there-
fore the UNIX system in general, determines what you can do by the
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permissions granted to your uid and group-id.

The file /etc/passwd is the password file; it contains all the login infor-
mation about each user. You can discover your uid and group-id, as does the
system, by looking up your name in /etc/passwd:

$ grep you /etc/passwd
you:gkmbCTrJ04COM:604:1:Y.0.A.People:/usr/you:
$

The fields in the password file are separated by colons and are laid out like this
(as seen in passwd(5)):

login-id : encrypted-password : uid : group-id : miscellany : login-directory : shell

The file is ordinary text, but the field definitions and separator are a conven-
tion agreed upon by the programs that use the information in the file.

The shell field is often empty, implying that you use the default shell,
/bin/sh. The miscellany field may contain anything; often, it has your name
and address or phone number.

Note that your password appears here in the second field, but only in an
encrypted form. Anybody can read the password file (you just did), so if your
password itself were there, anyone would be able to use it to masquerade as
you. When you give your password to login, it encrypts it and compares the
result against the encrypted password in /etc/passwd. If they agree, it lets
you log in. The mechanism works because the encryption algorithm has the
property that it’s easy to go from the clear form to the encrypted form, but
very hard to go backwards. For example, if your password is ka-boom, it
might be encrypted as gkmbCTrJ04COM, but given the latter, there’s no easy
way to get back to the original.

The kernel decided that you should be allowed to read /etc/passwd by
looking at the permissions associated with the file. There are three kinds of
permissions for each file: read (i.e., examine its contents), write (i.e., change
its contents), and execute (i.e., run it as a program). Furthermore, different
permissions can apply to different people. As file owner, you have one set of
read, write and execute permissions. Your ‘“‘group’ has a separate set. Every-
one else has a third set.

The -1 option of 1s prints the permissions information, among other
things:

$ 1s -1 /etc/passwd

-rw-r--r-- 1 root 5115 Aug 30 10:40 /etc/passwd
$ 1s -1g /etc/passwd

-rw-r--r-- 1 adm 5115 Aug 30 10:40 /etc/passwd
$

These two lines may be collectively interpreted as: /etc/passwd is owned by
login-id root, group adm, is 5115 bytes long, was last modified on August 30
at 10:40 AM, and has one link (one name in the file system; we’ll discuss links
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in the next section). Some versions of 1s give both owner and group in one
invocation.

The string -rw-r--r-- is how 1s represents the permissions on the file.
The first ~ indicates that it is an ordinary file. If it were a directory, there
would be a 4 there. The next three characters encode the file owner’s (based
on uid) read, write and execute permissions. rw- means that root (the
owner) may read or write, but not execute the file. An executable file would
have an x instead of a dash.

The next three characters (r--) encode group permissions, in this case that
people in group adm, presumably the system administrators, can read the file
but not write or execute it. The next three (also r--) define the permissions
for everyone else — the rest of the users on the system. On this machine,
then, only root can change the login information for a user, but anybody may
read the file to discover the information. A plausible alternative would be for
group adm to also have write permission on /etc/passwd.

The file /etc/group encodes group names and group-id’s, and defines
which users are in which groups. /etc/passwd identifies only your login
group; the newgrp command changes your group permissions to another
group.

Anybody can say

$ ed /etc/passwd

and edit the password file, but only root can write back the changes. You
might therefore wonder how you can change your password, since that involves
editing the password file. The program to change passwords is called passwd;
you will probably find it in /bin:

$ 1s -1 /bin/passwd
-YWSr-Xr-x 1 root 8454 Jan 4 1983 /bin/passwd
$

(Note that /etc/passwd is the text file containing the login information,
while /bin/passwd, in a different directory, is a file containing an executable
program that lets you change the password information.) The permissions here
state that anyone may execute the command, but only root can change the
passwd command. But the s instead of an x in the execute field for the file
owner states that, when the command is run, it is to be given the permissions
corresponding to the file owner, in this case root. Because /bin/passwd is
“set-uid” to root, any user can run the passwd command to edit the pass-
word file.

The set-uid bit is a simple but elegant ideaf that solves a number of security
problems. For example, the author of a game program can make the program
set-uid to the owner, so that it can update a score file that is otherwise

T The set-uid bit is patented by Dennis Ritchie.
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protected from other users’ access. But the set-uid concept is potentially
dangerous. /bin/passwd has to be correct; if it were not, it could destroy
system information under root’s auspices. If it had the permissions
_rwSIWXIwX, it could be overwritten by any user, who could therefore replace
the file with a program that does anything. This is particularly serious for a
set-uid program, because root has access permissions to every file on the sys-
tem. (Some UNIX systems turn the set-uid bit off whenever a file is modified,
to reduce the danger of a security hole.)

The set-uid bit is powerful, but used primarily for a few system programs
such as passwd. Let’s look at a more ordinary file.

$ 1s -1 /bin/who
-rwXrwxr-x 1 root 6348 Mar 29 1983 /bin/who
$

who is executable by everybody, and writable by root and the owner’s group.
What ‘“‘executable’” means is this: when you type

$ who

to the shell, it looks in a set of directories, one of which is /bin, for a file
named “who.” If it finds such a file, and if the file has execute permission,
the shell calls the kernel to run it. The kernel checks the permissions, and, if
they are valid, runs the program. Note that a program is just a file with exe-
cute permission. In the next chapter we will show you programs that are just
text files, but that can be executed as commands because they have execute
permission set.

Directory permissions operate a little differently, but the basic idea is the
same.

$ 1s -1d .
drwxrwxr-x 3 you 80 Sep 27 06:11
$

The -d option of 1s asks it to tell you about the directory itself, rather than its
contents, and the leading d in the output signifies that ‘.’ is indeed a directory.
An r field means that you can read the directory, so you can find out what
files are in it with 1s (or od, for that matter). A w means that you can create
and delete files in this directory, because that requires modifying and therefore
writing the directory file.

Actually, you cannot simply write in a directory — even root is forbidden
to do so.

«

$ who >. Try to overwrite
: cannot create You can’t
$

Instead there are system calls that create and remove files, and only through
them is it possible to change the contents of a directory. The permissions idea,
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however, still applies: the w fields tell who can use the system routines to
modify the directory.

Permission to remove a file is independent of the file itself. If you have
write permission in a directory, you may remove files there, even files that are
protected against writing. The rm command asks for confirmation before
removing a protected file, however, to check that you really want to do so —
one of the rare occasions that a UNIX program double-checks your intentions.
(The ~f£ flag to rm forces it to remove files without question.)

The x field in the permissions on a directory does not mean execution; it
means ‘‘search.” Execute permission on a directory determines whether the
directory may be searched for a file. It is therefore possible to create a direc-
tory with mode --x for other users, implying that users may access any file
that they know about in that directory, but may not run 1s on it or read it to
see what files are there. Similarly, with directory permissions r--, users can
see (1s) but not use the contents of a directory. Some installations use this
device to turn off /usr/games during busy hours.

The chmod (change mode) command changes permissions on files.

$ chmod permissions filenames ...

The syntax of the permissions is clumsy, however. They can be specified in
two ways, either as octal numbers or by symbolic description. The octal
numbers are easier to use, although the symbolic descriptions are sometimes
convenient because they can specify relative changes in the permissions. It
would be nice if you could say

$ chmod rw-rw-rw- junk Doesn’t work this way!
rather than

$ chmod 666 junk

but you cannot. The octal modes are specified by adding together a 4 for
read, 2 for write and 1 for execute permission. The three digits specify, as in
1s, permissions for the owner, group and everyone else. The symbolic codes
are difficult to explain; you must look in chmod(1) for a proper description.
For our purposes, it is sufficient to note that + turns a permission on and that
- turns it off. For example

$ chmod +x command
allows everyone to execute command, and

$ chmod -w file

turns off write permission for everyone, including the file’s owner. Except for
the usual disclaimer about super-users, only the owner of a file may change the
permissions on a file, regardless of the permissions themselves. Even if some-
body else allows you to write a file, the system will not allow you to change its
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permission bits.

$ 1s -1d /usr/mary

drwxrwxrwx 5 mary 704 Sep 25 10:18 /usr/mary
$ chmod 444 /usr/mary

chmod: can’t change /usr/mary

$

If a directory is writable, however, people can remove files in it regardless of
the permissions on the files themselves. If you want to make sure that you or
your friends never delete files from a directory, remove write permission from
it:

$ cd

$ date >temp

$ chmod -w . Make directory unwritable
$ 1s -1d .

dr-xr-xr-x 3 you 80 Sep 27 11:48

$ rm temp

rm: temp not removed Can’t remove file
$ chmod 775 . Restore permission
$ 1s -1d .

drwxrwxr-x 3 you 80 Sep 27 11:48

$ rm temp

$ Now you can

temp is now gone. Notice that changing the permissions on the directory
didn’t change its modification date. The modification date reflects changes to
the file’s contents, not its modes. The permissions and dates are not stored in
the file itself, but in a system structure called an index node, or i-node, the
subject of the next section.

Exercise 2-5. Experiment with chmod. Try different simple modes, like 0 and 1. Be
careful not to damage your login directory! O

2.5 Inodes

A file has several components: a name, contents, and administrative infor-
mation such as permissions and modification times. The administrative infor-
mation is stored in the inode (over the years, the hyphen fell out of “i-node”),
along with essential system data such as how long it is, where on the disc the
contents of the file are stored, and so on.

There are three times in the inode: the time that the contents of the file
were last modified (written); the time that the file was last used (read or exe-
cuted); and the time that the inode itself was last changed, for example to set
the permissions.
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$ date

Tue Sep 27 12:07:24 EDT 1983
$ date >junk

$ 1s -1 junk

-rw-rw-rw- 1 you 29 Sep 27 12:07 junk
$ 1s -lu junk

-rw-rw-rw- 1 you 29 Sep 27 06:11 junk
$ 1s -1lc junk

-rw-rw-rw- 1 you 29 Sep 27 12:07 junk
$

Changing the contents of a file does not affect its usage time, as reported by

1s -1lu, and changing the permissions affects only the inode change time, as
reported by 1s -1lc.

$ chmod 444 junk
$ 1s -lu junk

-r--r--r-- 1 you 29 Sep 27 06:11 junk
$ 1s -lc junk

-r--r--r-- 1 you 29 Sep 27 12:11 junk
$ chmod 666 junk

$

The -t option to 1s, which sorts the files according to time, by default that
of last modification, can be combined with -c or -u to report the order in
which inodes were changed or files were read:

$ 1ls recipes

cookie

pie

$ 1s -1lut

total 2

drwxrwxrwx 4 you 64 Sep 27 12:11 recipes
-rw-rw-rw- 1 you 29 Sep 27 06:11 junk

$

recipes is most recently used, because we just looked at its contents.

It is important to understand inodes, not only to appreciate the options on
1s, but because in a strong sense the inodes are the files. All the directory
hierarchy does is provide convenient names for files. The system’s internal
name for a file is its i-number: the number of the inode holding the file’s infor-
mation. 1s -i reports the i-number in decimal:

$ date >x

$ 1s -1

15768 junk
15274 recipes
15852 x

$

It is the i-number that is stored in the first two bytes of a directory, before the
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name. od -d will dump the data in decimal by byte pairs rather than octal by
bytes and thus make the i-number visible.

$ od -c .

0000000 4 H . N0 N0 NO NO NO NO NO NO NO NO \O NO O
0000020 273 ( . . N0 N0 N\O NO NO N\O NO NO NO N\O NO O
0000040 252 H r e c i P e s N0 N0 \O N0 \O \O o

0000060 230 =
0000100 354 =
0000120

$ od -d .
0000000 15156 00046 00000 00000 00000 00000 00000 00000
0000020 10427 11822 00000 00000 00000 00000 00000 00000
0000040 15274 25970 26979 25968 00115 00000 00000 00000
0000060 15768 30058 27502 00000 00000 00000 00000 00000
0000100 15852 00120 00000 00000 00000 00000 00000 00000
0000120

$

N0 N0 N0 NO NO NO N\O N\O NO O
NO N0 NO N0 NO NO N\O NO NO NO NO NO O

!
[~}
=}
ta

The first two bytes in each directory entry are the only connection between the
name of a file and its contents. A filename in a directory is therefore called a
link, because it links a name in the directory hierarchy to the inode, and hence
to the data. The same i-number can appear in more than one directory. The
rm command does not actually remove inodes; it removes directory entries or
links. Only when the last link to a file disappears does the system remove the
inode, and hence the file itself.

If the i-number in a directory entry is zero, it means that the link has been
removed, but not necessarily the contents of the file — there may still be a link
somewhere else. You can verify that the i-number goes to zero by removing
the file:

$ rm x

$ od -d .

0000000 15156 00046 00000 00000 00000 00000 00000 OOOOO
0000020 10427 11822 00000 00000 00000 00000 00000 0O0O0OO
0000040 15274 25970 26979 25968 00115 00000 00000 00000
0000060 15768 30058 27502 00000 00000 00000 00000 0O0O0OO
0000100 00000 00120 00000 00000 00000 00000 00000 OOOOO
0000120

$

The next file created in this directory will go into the unused slot, although it
will probably have a different i-number.
The 1n command makes a link to an existing file, with the syntax

$ 1n old-file new-file

The purpose of a link is to give two names to the same file, often so it can
appear in two different directories. On many systems there is a link to
/bin/ed called /bin/e, so that people can call the editor e. Two links to a
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file point to the same inode, and hence have the same i-number:

$ 1n junk linktojunk

$ 1s -11i

total 3

15768 -rw-rw-rw- 2 you 29 Sep 27 12:07 junk

15768 -rw-rw-rw- 2 you 29 Sep 27 12:07 linktojunk
15274 drwxrwxrwx 4 you 64 Sep 27 09:34 recipes

$

The integer printed between the permissions and the owner is the number of
links to the file. Because each link just points to the inode, each link is equally
important — there is no difference between the first link and subsequent ones.
(Notice that the total disc space computed by 1s is wrong because of double
counting.)

When you change a file, access to the file by any of its names will reveal
the changes, since all the links point to the same file.

$ echo x >junk

$ 1s -1

total 3

-YW-Irw-rw- 2 you 2 Sep 27 12:37 junk
~-YW-rw-rw- 2 you 2 Sep 27 12:37 linktojunk
drwxrwxrwx 4 you 64 Sep 27 09:34 recipes
$ rm linktojunk

$ 1s -1

total 2

-rw-rw-rw- 1 you 2 Sep 27 12:37 junk
drwxrwxrwx 4 you 64 Sep 27 09:34 recipes
$

After linktojunk is removed the link count goes back to one. As we said
before, rm’ing a file just breaks a link; the file remains until the last link is
removed. In practice, of course, most files only have one link, but again we
see a simple idea providing great flexibility.

A word to the hasty: once the last link to a file is gone, the data is irretriev-
able. Deleted files go into the incinerator, rather than the waste basket, and
there is no way to call them back from the ashes. (There is a faint hope of
resurrection. Most large UNIX systems have a formal backup procedure that
periodically copies changed files to some safe place like magnetic tape, from
which they can be retrieved. For your own protection and peace of mind, you
should know just how much backup is provided on your system. If there is
none, watch out — some mishap to the discs could be a catastrophe.)

Links to files are handy when two people wish to share a file, but some-
times you really want a separate copy — a different file with the same infor-
mation. You might copy a document before making extensive changes to it,
for example, so you can restore the original if you decide you don’t like the
changes. Making a link wouldn’t help, because when the data changed, both
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links would reflect the change. cp makes copies of files:

$ cp junk copyofjunk

$ 1s -1i

total 3

15850 -rw-rw-rw- 1 you 2 Sep 27 13:13 copyofjunk
15768 -rw-rw-rw- 1 you 2 Sep 27 12:37 junk

15274 drwxrwxrwx 4 you 64 Sep 27 09:34 recipes

$

The i-numbers of junk and copyof junk are different, because they are dif-
ferent files, even though they currently have the same contents. It’s often a
good idea to change the permissions on a backup copy so it’s harder to remove
it accidentally.

$ chmod -w copyofjunk Turn off write permission

$ 1s -11

total 3

15850 -r--r--r-- 1 you 2 Sep 27 13:13 copyofjunk
15768 -rw-rw-rw- 1 you 2 Sep 27 12:37 junk
15274 drwxrwxrwx 4 you 64 Sep 27 09:34 recipes
$ rm copyofjunk

rm: copyofjunk 444 mode n No! It’s precious

$ date >junk

$ 1s -11i

total 3

15850 -r--r--r-- 1 you 2 Sep 27 13:13 copyof junk
15768 -rw-rw-rw- 1 you 29 Sep 27 13:16 junk
15274 drwxrwxrwx 4 you 64 Sep 27 09:34 recipes
$ rm copyof junk

rm: copyofjunk 444 mode y Well, maybe not so precious
$ 1s -11i

total 2

15768 -rw-rw-rw- 1 you 29 Sep 27 13:16 junk
15274 drwxrwxrwx 4 you 64 Sep 27 09:34 recipes
$

Changing the copy of a file doesn’t change the original, and removing the copy
has no effect on the original. Notice that because copyof junk had write per-
mission turned off, rm asked for confirmation before removing the file.

There is one more common command for manipulating files: mv moves or
renames files, simply by rearranging the links. Its syntax is the same as cp
and 1n:
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$ mv junk sameoldjunk

$ 1s -11

total 2

15274 drwxrwxrwx 4 you 64 Sep 27 09:34 recipes
15768 -rw-rw-rw- 1 you 29 Sep 27 13:16 sameoldjunk
$

sameoldjunk is the same file as our old junk, right down to the i-number;
only its name — the directory entry associated with inode 15768 — has been
changed.

We have been doing all this file shuffling in one directory, but it also works
across directories. 1n is often used to put links with the same name in several
directories, such as when several people are working on one program or docu-
ment. mv can move a file or directory from one directory to another. In fact,
these are common enough idioms that mv and cp have special syntax for them:

$ mv (or cp) filel file2 ... directory
moves (or copies) one or more files to the directory which is the last argument.

The links or copies are made with the same filenames. For example, if you
wanted to try your hand at beefing up the editor, you might begin by saying

$ cp /usr/src/cmd/ed.c .
to get your own copy of the source to play with. If you were going to work on
the shell, which is in a number of different source files, you would say

$ mkdir sh
$ cp /usr/src/cmd/sh/% sh

and cp would duplicate all of the shell’s source files in your subdirectory sh
(assuming no subdirectory structure in /usr/src/cmd/sh — cp is not very
clever). On some systems, 1n also accepts multiple file arguments, again with
a directory as the last argument. And on some systems, mv, cp and 1ln are
themselves links to a single file that examines its name to see what service to
perform.

Exercise 2-6. Why does 1s -1 report 4 links to recipes? Hint: try
. $ 1s -1d /usr/you
Why is this useful information? O
Exercise 2-7. What is the difference between
$ mv junk junk1
and

$ cp junk junk1
$ rm junk

Hint: make a link to junk, then try it. O
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Exercise 2-8. cp doesn’t copy subdirectories, it just copies files at the first level of a
hierarchy. What does it do if one of the argument files is a directory? Is this kind or
even sensible? Discuss the relative merits of three possibilities: an option to cp to des-
cend directories, a separate command rcp (recursive copy) to do the job, or just having
cp copy a directory recursively when it finds one. See Chapter 7 for help on providing
this facility. What other programs would profit from the ability to traverse the directory
tree? O

2.6 The directory hierarchy

In Chapter 1, we looked at the file system hierarchy rather informally,
starting from /usr/you. We’re now going to investigate it in a more orderly
way, starting from the top of the tree, the root.

The top directory is /.

$ 1s /
bin
boot
dev
etc
1lib
tmp
unix
usr

$

/unix is the program for the UNIX kernel itself: when the system starts,
/unix is read from disc into memory and started. Actually, the process
occurs in two steps: first the file /boot is read; it then reads in /unix. More
information about this *“‘bootstrap’ process may be found in boot(8). The rest
of the files in /, at least here, are directories, each a somewhat self-contained
section of the total file system. In the following brief tour of the hierarchy,
play along with the text: explore a bit in the directories mentioned. The more
familiar you are with the layout of the file system, the more effectively you
will be able to use it. Table 2.1 suggests good places to look, although some of
the names are system dependent.

/bin (binaries) we have seen before: it is the directory where the basic
programs such as who and ed reside.

/dev (devices) we will discuss in the next section.

/etc (et cetera) we have also seen before. It contains various administra-
tive files such as the password file and some system programs such as
/etc/getty, which initializes a terminal connection for /bin/login.
/etc/rc is a file of shell commands that is executed after the system is
bootstrapped. /etc/group lists the members of each group.

/1ib (library) contains primarily parts of the C compiler, such as
/1ib/cpp, the C preprocessor, and /1ib/1libc.a, the C subroutine library.

/tmp (temporaries) is a repository for short-lived files created during the
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Table 2.1: Interesting Directories (see also hiexr(7))
/ root of the file system
/bin essential programs in executable form (‘‘binaries’)
/dev device files
/etc system miscellany
/etc/motd login message of the day
/etc/passwd password file
/1lib essential libraries, etc.
/tmp temporary files; cleaned when system is restarted
/unix executable form of the operating system
/usr user file system
/usr/adm system administration: accounting info., etc.
/usr/bin user binaries: troff, etc.
/usr/dict dictionary (words) and support for spell(l)
/usr/games game programs
/usr/include header files for C programs, e.g. math.h
/usr/include/sys  system header files for C programs, e.g. inode.h
/usr/1ib libraries for C, FORTRAN, etc.
/usr/man on-line manual
/usr/man/man manual pages for section 1 of manual
/usr/mdec hardware diagnostics, bootstrap programs, etc.
/usr/news community service messages
/usxr/pub public oddments: see ascii(7) and eqnchar(7)
/usr/src source code for utilities and libraries
/usr/src/cmd source for commands in /bin and /usr/bin
/usr/src/1lib source code for subroutine libraries
/usr/spool working directories for communications programs
/usr/spool/1lpd line printer temporary directory
/usr/spool/mail mail in-boxes
/usr/spool/uucp working directory for the uucp programs
/usr/sys source for the operating system kernel
/usr/tmp alternate temporary directory (little used)
/usr/you your login directory
/usr/you/bin your personal programs

execution of a program. When you start up the editor ed, for example, it
creates a file with a name like /tmp/e00512 to hold its copy of the file you
are editing, rather than working with the original file. It could, of course,
create the file in your current directory, but there are advantages to placing it
in /tmp: although it is unlikely, you might already have a file called e00512
in your directory; /tmp is cleaned up automatically when the system starts, so
your directory doesn’t get an unwanted file if the system crashes; and often
/tmp is arranged on the disc for fast access.
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There is a problem, of course, when several programs create files in /tmp
at once: they might interfere with each other’s files. That is why ed’s tem-
porary file has a peculiar name: it is constructed in such a way as to guarantee
that no other program will choose the same name for its temporary file. In
Chapters 5 and 6 we will see ways to do this.

/usr is called the “‘user file system,” although it may have little to do with
the actual users of the system. On our machine, our login directories are
/usr/bwk and /usr/rob, but on your machine the /usr part might be dif-
ferent, as explained in Chapter 1. Whether or not your personal files are in a
subdirectory of /usr, there are a number of things you are likely to find there
(although local customs vary in this regard, too). Just as in /, there are direc-
tories called /usr/bin, /usr/1lib and /usr/tmp. These directories have
functions similar to their namesakes in /, but contain programs less critical to
the system. For example, nroff is usually in /usr/bin rather than /bin,
and the FORTRAN compiler libraries live in /usr/1ib. Of course, just what
is deemed ‘‘critical” varies from system to system. Some systems, such as the
distributed 7th Edition, have all the programs in /bin and do away with
/usr/bin altogether; others split /usr/bin into two directories according to
frequency of use.

Other directories in /usr are /usr/adm, containing accounting informa-
tion and /usr/dict, which holds a modest dictionary (see spell(1)). The
on-line manual is kept in /usr/man — see /usr/man/man1/spell. 1, for
example. If your system has source code on-line, you will probably find it in
/usr/src.

It is worth spending a little time exploring the file system, especially /usr,
to develop a feeling for how the file system is organized and where you might
expect to find things.

2.7 Devices

We skipped over /dev in our tour, because the files there provide a nice
review of files in general. As you might guess from the name, /dev contains
device files. (

One of the prettiest ideas in the UNIX system is the way it deals with peri-
pherals — discs, tape drives, line printers, terminals, etc. Rather than having
special system routines to, for example, read magnetic tape, there is a file
called /dev/mt0 (again, local customs vary). Inside the kernel, references to
that file are converted into hardware commands to access the tape, so if a pro-
gram reads /dev/mtO, the contents of a tape mounted on the drive are
returned. For example,

$ cp /dev/mt0 junk

copies the contents of the tape to a file called junk. cp has no idea there is
anything special about /dev/mtO0; it is just a file — a sequence of bytes.
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The device files are something of a zoo, each creature a little different, but
the basic ideas of the file system apply to each. Here is a significantly shor-
tened list of our /dev:

$ 1s -1 /dev

crw--w--w- 1 root 0, 0 Sep 27 23:09 console
crw-r--r-- 1 root 3, 1 Sep 27 14:37 kmem
crw-r--r-- 1 root 3, 0 May 6 1981 mem
brw-rw-rw- 1 root 1, 64 Aug 24 17:41 mt0
crw-rw-rw- 1 root 3, 2 Sep 28 02:03 null
crw-rw-rw- 1 root 4, 64 Sep 9 15:42 rmtO
brw-r----- 1 root 2, 0 Sep 8 08:07 rp0O
brw-r----- 1 root 2, 1 Sep 27 23:09 rp01
Crw-r—--—--- 1 root 13, 0 Apr 12 1983 rrp0O0
CrwW-r—-—-—-- 1 root 13, 1 Jul 28 15:18 rrp01
crw-rw-rw- 1 root 2, 0 Jul 5 08:04 tty
crw--w--w- 1 you 1, 0 Sep 28 02:38 tty0
crw--w--w- 1 root 1, 1 Sep 27 23:09 tty1
crw--w--w- 1 root 1, 2 Sep 27 17:33 tty2
crw--w--w- 1 root 1, 3 Sep 27 18:48 tty3

$

The first things to notice are that instead of a byte count there is a pair of
small integers, and that the first character of the mode is always a ‘b’ or a ‘c’.
This is how 1s prints the information from an inode that specifies a device
rather than a regular file. The inode of a regular file contains a list of disc
blocks that store the file’s contents. For a device file, the inode instead con-
tains the internal name for the device, which consists of its type — character
(c) or block (b) — and a pair of numbers, called the major and minor device
numbers. Discs and tapes are block devices; everything else — terminals,
printers, phone lines, etc. — is a character device. The major number encodes
the type of device, while the minor number distinguishes different instances of
the device. For example, /dev/tty0 and /dev/tty1 are two ports on the
same terminal controller, so they have the same major device number but dif-
ferent minor numbers.

Disc files are usually named after the particular hardware variant they
represent. /dev/rp00 and /dev/rp01 are named after the DEC RP06 disc
drive attached to the system. There is just one drive, divided logically into two
file systems. If there were a second drive, its associated files would be named
/dev/rp10 and /dev/rp11. The first digit specifies the physical drive, and
the second which portion of the drive.

You might wonder why there are several disc device files, instead of just
one. For historical reasons and for ease of maintenance, the file system is
divided into smaller subsystems. The files in a subsystem are accessible
through a directory in the main system. The program /etc/mount reports
the correspondence between device files and directories:
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$ /etc/mount
rp01 on /usr
$

In our case, the root system occupies /dev/rp00 (although this isn’t reported
by /etc/mount) while the user file system — the files in /usr and its sub-
directories — reside on /dev/rp01.

The root file system has to be present for the system to execute. /bin,
sdev and /etc are always kept on the root system, because when the system
starts only files in the root system are accessible, and some files such as
/bin/sh are needed to run at all. During the bootstrap operation, all the file
systems are checked for self-consistency (see icheck(8) or fsck(8)), and
attached to the root system. This attachment operation is called mounting, the
software equivalent of mounting a new disc pack in a drive; it can normally be
done only by the super-user. After /dev/rp01 has been mounted as /usr,
the files in the user file system are accessible exactly as if they were part of the
root system.

For the average user, the details of which file subsystem is mounted where
are of little interest, but there are a couple of relevant points. First, because
the subsystems may be mounted and dismounted, it is illegal to make a link to
a file in another subsystem. For example, it is impossible to link programs in
/bin to convenient names in private bin directories, because /usr is in a dif-
ferent file subsystem from /bin:

$ 1n /bin/mail /usr/you/bin/m
1ln: Cross-device link
$

There would also be a problem because inode numbers are not unique in dif-
ferent file systems.

Second, each subsystem has fixed upper limits on size (number of blocks
available for files) and inodes. If a subsystem fills up, it will be impossible to
enlarge files in that subsystem until some space is reclaimed. The df (disc
free space) command reports the available space on the mounted file subsys-
tems:

$ df

/dev/rp00 1989
/dev/rp01 21257
$

/usr has 21257 free blocks. Whether this is ample space or a crisis depends
on how the system is used; some installations need more file space headroom
than others. By the way, of all the commands, df probably has the widest
variation in output format. Your df output may look quite different.

Let’s turn now to some more generally useful things. When you log in, you
get a terminal line and therefore a file in /dev through which the characters
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you type and receive are sent. The tty command tells you which terminal you
are using:

$ who am i

you tty0 Sep 28 01:02

$ tty

/dev/tty0

$ 1s -1 /dev/tty0

crw--w--w- 1 you 1, 12 Sep 28 02:40 /dev/tty0

$ date >/dev/tty0
Wed Sep 28 02:40:51 EDT 1983
$

Notice that you own the device, and that only you are permitted to read it. In
other words, no one else can directly read the characters you are typing. Any-
one may write on your terminal, however. To prevent this, you could chmod
the device, thereby preventing people from using write to contact you, or you
could just use mesg.

$ mesg n Turn off messages

$ 1s -1 s/dev/tty0

CYW-=-=-——--- 1 you 1, 12 Sep 28 02:41 /dev/tty0
$ mesg y Restore

$

It is often useful to be able to refer by name to the terminal you are using,
but it’s inconvenient to determine which one it is. The device /dev/tty is a
synonym for your login terminal, whatever terminal you are actually using.

$ date >/dev/tty
Wed Sep 28 02:42:23 EDT 1983
$

/dev/tty is particularly useful when a program needs to interact with a user
even though its standard input and output are connected to files rather than the
terminal. crypt is one program that uses /dev/tty. The ‘clear text”
comes from the standard input, and the encrypted data goes to the standard
output, so crypt reads the encryption key from /dev/tty:

$ crypt <cleartext >cryptedtext
Enter key: Type encryption key
$

The use of /dev/tty isn’t explicit in this example, but it is there. If crypt
read the key from the standard input, it would read the first line of the clear
text. So instead crypt opens /dev/tty, turns off automatic character echo-
ing so your encryption key doesn’t appear on the screen, and reads the key. In
Chapters 5 and 6 we will come across several other uses of /dev/tty.
Occasionally you want to run a program but don’t care what output is pro-
duced. For example, you may have already seen today’s news, and don’t want
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to read it again. Redirecting news to the file /dev/null causes its output to
be thrown away:

$ news >/dev/null
$

Data written to /dev/null is discarded without comment, while programs
that read from /dev/null get end-of-file immediately, because reads from
/dev/null always return zero bytes.

One common use of /dev/null is to throw away regular output so that
diagnostic messages are visible. For example, the time command (time(1))
reports the CPU usage of a program. The information is printed on the stan-
dard error, so you can time commands that generate copious output by sending
the standard output to /dev/null:

$ 1s -1 /usr/dict/words
-r--r-~r-- 1 bin 196513 Jan 20 1979 /usr/dict/words
$ time grep e /usr/dict/words >/dev/null

real 1
user

sys

$ time egrep e /usr/dict/words >/dev/null

N O W
N O o

real 8.
user 3.
sys 2.
$

W Y o

The numbers in the output of time are elapsed clock time, CPU time spent in
the program and CPU time spent in the kernel while the program was running.
egrep is a high-powered variant of grep that we will discuss in Chapter 4; it’s
about twice as fast as grep when searching through large files. If output from
grep and egrep had not been sent to /dev/null or a real file, we would
have had to wait for hundreds of thousands of characters to appear on the ter-
minal before finding out the timing information we were after.

Exercise 2-9. Find out about the other files in /dev by reading Section 4 of the
manual. What is the difference between /dev/mt0 and /dev/rmt0? Comment on
the potential advantages of having subdirectories in /dev for discs, tapes, etc. O

Exercise 2-10. Tapes written on non-UNIX systems often have different block sizes, such
as 800 bytes — ten 80-character card images — but the tape device /dev/mt0 expects
512-byte blocks. Look up the dd command (dd(1)) to see how to read such a tape. O

Exercise 2-11. Why isn’t /dev/tty just a link to your login terminal? What would
happen if it were mode rw--w--w- like your login terminal? O

Exercise 2-12. How does write(1l) work? Hint: see utmp(5). O

Exercise 2-13. How can you tell if a user has been active at the terminal recently? O
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History and bibliographic notes

The file system forms one part of the discussion in ‘“‘UNIX implementation,”
by Ken Thompson (BSTJ, July, 1978). A paper by Dennis Ritchie, entitled
“The evolution of the UNIX time-sharing system” (Symposium on Language
Design and Programming Methodology, Sydney, Australia, Sept. 1979) is an
fascinating description of how the file system was designed and implemented
on the original PDP-7 UNIX system, and how it grew into its present form.

The UNIX file system adapts some ideas from the MULTICS file system. The
MULTICS System: An Examination of its Structure, by E. 1. Organick (MIT
Press, 1972) provides a comprehensive treatment of MULTICS.

“Password security: a case history,” by Bob Morris and Ken Thompson, is
an entertaining comparison of password mechanisms on a variety of systems; it
can be found in Volume 2B of the UNIX Programmer’s Manual .

In the same volume, the paper “On the security of UNIX,” by Dennis
Ritchie, explains how the security of a system depends more on the care taken
with its administration than with the details of programs like crypt.



CHAPTER 3: USING THE SHELL

The shell — the program that interprets your requests to run programs — is
the most important program for most UNIX users; with the possible exception of
your favorite text editor, you will spend more time working with the shell than
any other program. In this chapter and in Chapter 5, we will spend a fair
amount of time on the shell’s capabilities. The main point we want to make is
that you can accomplish a lot without much hard work, and certainly without
resorting to programming in a conventional language like C, if you know how
to use the shell.

We have divided our coverage of the shell into two chapters. This chapter
goes one step beyond the necessities covered in Chapter 1 to some fancier but
commonly used shell features, such as metacharacters, quoting, creating new
commands, passing arguments to them, the use of shell variables, and some
elementary control flow. These are topics you should know for your own use
of the shell. The material in Chapter 5 is heavier going — it is intended for
writing serious shell programs, ones that are bullet-proofed for use by others.
The division between the two chapters is somewhat arbitrary, of course, so
both should be read eventually.

3.1 Command line structure

To proceed, we need a slightly better understanding of just what a com-
mand is, and how it is interpreted by the shell. This section is a more formal
coverage, with some new information, of the shell basics introduced in the first
chapter.

The simplest command is a single word, usually naming a file for execution
(later we will see some other types of commands):

$ who Execute the file /bin/who
you tty2 Sep 28 07:51

jpl ttyd Sep 28 08:32

$

A command usually ends with a newline, but a semicolon ; is also a command
terminator.

71
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$ date;

Wed Sep 28 09:07:15 EDT 1983
$ date; who

Wed Sep 28 09:07:23 EDT 1983

you tty2 Sep 28 07:51
jpl tty4 Sep 28 08:32
$

Although semicolons can be used to terminate commands, as usual nothing
happens until you type RETURN. Notice that the shell only prints one prompt
after multiple commands, but except for the prompt,

$ date; who

is identical to typing the two commands on different lines. In particular, who
doesn’t run until date has finished.

Try sending the output of “date; who” through a pipe:

$ date; who | wc

Wed Sep 28 09:08:48 EDT 1983
2 10 60

$

This might not be what you expected, because only the output of who goes to
we. Connecting who and we with a pipe forms a single command, called a
pipeline, that runs after date. The precedence of i is higher than that of ‘;’
as the shell parses your command line.

Parentheses can be used to group commands:

$ (date; who)
Wed Sep 28 09:11:09 EDT 1983

you tty2 Sep 28 07:51
jpl tty4 Sep 28 08:32
$ (date; who) | wc

3 16 89
$

The outputs of date and who are concatenated into a single stream that can be
sent down a pipe.

Data flowing through a pipe can be tapped and placed in a file (but not
another pipe) with the tee command, which is not part of the shell, but is

nonetheless handy for manipulating pipes. One use is to save intermediate out-
put in a file:
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$ (date; who) | tee save { wc

3 16 89 Output from wc
$ cat save
Wed Sep 28 09:13:22 EDT 1983

you tty2 Sep 28 07:51
jpl tty4 Sep 28 08:32
$ wc <save

3 16 89
$

tee copies its input to the named file or files, as well as to its output, so wc
receives the same data as if tee weren’t in the pipeline.

Another command terminator is the ampersand &. It’s exactly like the
semicolon or newline, except that it tells the shell not to wait for the command
to complete. Typically, & is used to run a long-running command ‘in the
background” while you continue to type interactive commands:

$ long-running-command &
5273 Process-id of long-running-command
$ Prompt appears immediately

Given the ability to group commands, there are some more interesting uses of
background processes. The command sleep waits the specified number of
seconds before exiting:

$ sleep 5

$ Five seconds pass before prompt
$ (sleep 5; date) & date

5278

Wed Sep 28 09:18:20 EDT 1983 Output from second date

$ Wed Sep 28 09:18:25 EDT 1983 Prompt appears, then date 5 sec. later

The background process starts but immediately sleeps; meanwhile, the second
date command prints the current time and the shell prompts for a new com-
mand. Five seconds later, the sleep exits and the first date prints the new
time. It’s hard to represent the passage of time on paper, so you should try
this example. (Depending on how busy your machine is and other such details,
the difference between the two times might not be exactly five seconds.) This
is an easy way to run a command in the future; consider

$ (sleep 300; echo Tea is ready) & Tea will be ready in 5 minutes
5291

$

as a handy reminder mechanism. (A ctl-g in the string to be echoed will ring
the terminal’s bell when it’s printed.) The parentheses are needed in these
examples, since the precedence of & is higher than that of *;’.

The & terminator applies to commands, and since pipelines are commands
you don’t need parentheses to run pipelines in the background:
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$ pr file ! lpr &

arranges to print the file on the line printer without making you wait for the
command to finish. Parenthesizing the pipeline has the same effect, but
requires more typing:

$ (pr file | lpr) & Same as last example

Most programs accept arguments on the command line, such as file (an
argument to pr) in the above example. Arguments are words, separated by
blanks and tabs, that typically name files to be processed by the command, but
they are strings that may be interpreted any way the program sees fit. For
example, pr accepts names of files to print, echo echoes its arguments without
interpretation, and grep’s first argument specifies a text pattern to search for.
And, of course, most programs also have options, indicated by arguments
beginning with a minus sign.

The various special characters interpreted by the shell, such as <, >, i, ;
and &, are not arguments to the programs the shell runs. They instead control
how the shell runs them. For example,

$ echo Hello >junk
tells the shell to run echo with the single argument Hello, and place the out-
put in the file junk. The string >junk is not an argument to echo; it is

interpreted by the shell and never seen by echo. In fact, it need not be the
last string in the command:

$ >junk echo Hello
is identical, but less obvious.

Exercise 3-1. What are the differences among the following three commands?

$ cat file | pr
$ pr <file
$ pr file

(Over the years the redirection operator < has lost some ground to pipes; people seem to
find “cat file |” more natural than “<file”.) O

3.2 Metacharacters

The shell recognizes a number of other characters as special; the most com-
monly used is the asterisk * which tells the shell to search the directory for
filenames in which any string of characters occurs in the position of the *. For
example,

$ echo *

is a poor facsimile of 1s. Something we didn’t mention in Chapter 1 is that
the filename-matching characters do not look at filenames beginning with a
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dot, to avoid problems with the names ‘.’ and ‘..’ that are in every directory.
The rule is: the filename-matching characters only match filenames beginning
with a period if the period is explicitly supplied in the pattern. As usual, a
judicious echo or two will clarify what happens:

$ 1s

.profile

junk

temp

$ echo =*

junk temp

$ echo .=
.profile

$

Characters like * that have special properties are known as metacharacters .
There are a lot of them: Table 3.1 is the complete list, although a few of them
won’t be discussed until Chapter 5.

Given the number of shell metacharacters, there has to be some way to say
to the shell, “Leave it alone.” The easiest and best way to protect special
characters from being interpreted is to enclose them in single quote characters:

’ ’

$ echo “##»*

* ¥ *

$
It’s also possible to use the double quotes "...", but the shell actually peeks
inside these quotes to look for $, *...*, and \, so don’t use "..." unless you

intend some processing of the quoted string.
A third possibility is to put a backslash \ in front of each character that you
want to protect from the shell, as in

$ echo \#\x\=*

Although \#\*\+ isn’t much like English, the shell terminology for it is still a
word, which is any single string the shell accepts as a unit, including blanks if
they are quoted.

Quotes of one kind protect quotes of the other kind:

$ echo "Don’t do that!"
Don’t do that!
$

and they don’t have to surround the whole argument:

$ echo x'*’y
X*y

$ echo "#’A’?’
*A?

$
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(...0
}

$var
${var}

var=value

p1 && p;
P oD

$1, $2 etc.

Table 3.1: Shell Metacharacters

prog >file direct standard output to file
prog >>file append standard output to file
prog <file take standard input from file
p1ip, connect standard output of p, to standard input of p,
here document: standard input follows, up to next str
on a line by itself
match any string of zero or more characters in filenames
match any single character in filenames
match any single character from ccc in filenames;
ranges like 0-9 or a-z are legal
command terminator: p,;p, does p,, then p,
like ; but doesn’t wait for p; to finish
run command(s) in ...; output replaces
run command(s) in ... in a sub-shell
run command(s) in ... in current shell (rarely used)
$0...$9 replaced by arguments to shell file
value of shell variable var
value of var; avoids confusion when concatenated with text;
see also Table 5.3
\c take character c literally, \newline discarded
take ... literally
take ... literally after $, *...* and \ interpreted
if # starts word, rest of line is a comment (not in 7th Ed.)
assign to variable var
run p,; if successful, run p,
run p; if unsuccessful, run p,

AN AN

In this last example, because the quotes are discarded after they’ve done their
job, echo sees a single argument containing no quotes.
Quoted strings can contain newlines:

$ echo

‘hello

> world”’

hello
world

$

The string ‘> ’ is a secondary prompt printed by the shell when it expects you
to type more input to complete a command. In this example the quote on the

first line has to be balanced with another.

The secondary prompt string is

stored in the shell variable PS2, and can be modified to taste.
In all of these examples, the quoting of a metacharacter prevents the shell
from trying to interpret it. The command

CHAPTER 3
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$ echo x*y

echoes all the filenames beginning x and ending y. As always, echo knows
nothing about files or shell metacharacters; the interpretation of *, if any, is
supplied by the shell.

What happens if no files match the pattern? The shell, rather than com-
plaining (as it did in early versions), passes the string on as though it had been
quoted. It’s usually a bad idea to depend on this behavior, but it can be
exploited to learn of the existence of files matching a pattern:

$ 1s x*y

x*y not found Message from 1s: no such files exist
$ >xyzzy Create xyzzy

$ 1s x»y

Xyzzy File xyzzy matches x*y

$ 1s ’xxy’

x*y not found 1s doesn’t interpret the *

$

A backslash at the end of a line causes the line to be continued; this is the
way to present a very long line to the shell.

$ echo abc\
> def\

> ghi
abcdefghi

$

Notice that the newline is discarded when preceded by backslash, but is
retained when it appears in quotes.

The metacharacter # is almost universally used for shell comments; if a
shell word begins with #, the rest of the line is ignored:

$ echo hello # there
hello

$ echo hello#there
hello#there

$

The # was not part of the original 7th Edition, but it has been adopted very
widely, and we will use it in the rest of the book.

Exercise 3-2. Explain the output produced by
$ 1s .»

a

A digression on echo
Even though it isn’t explicitly asked for, a final newline is provided by
echo. A sensible and perhaps cleaner design for echo would be to print only
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what is requested. This would make it easy to issue prompts from the shell:

$ pure-echo Enter a command:
Enter a command:s$ No trailing newline

but has the disadvantage that the most common case — providing a newline —
is not the default and takes extra typing:

$ pure-echo ‘Hello!
5 -

Hello!

$

Since a command should by default execute its most commonly used function,
the real echo appends the final newline automatically.

But what if it isn’t desired? The 7th Edition echo has a single option, -n,
to suppress the last newline:

$ echo -n Enter a command:

Enter a command:s$ Prompt on same line
$ echo -

- Only -n is special
$

The only tricky case is echoing -n followed by a newline:

$ echo -n ’-n
> ’,
-n

$

It’s ugly, but it works, and this is a rare situation anyway.

A different approach, taken in System V, is for echo to interpret C-like
backslash sequences, such as \b for backspace and \c¢ (which isn’t actually in
the C language) to suppress the last newline:

$ echo ’Enter a command:\c’ System V version
Enter a command:$

Although this mechanism avoids confusion about echoing a minus sign, it has
other problems. echo is often used as a diagnostic aid, and backslashes are
interpreted by so many programs that having echo look at them too just adds
to the confusion.

Still, both designs of echo have good and bad points. We shall use the 7th
Edition version (-n), so if your local echo obeys a different convention, a
couple of our programs will need minor revision.

Another question of philosophy is what echo should do if given no argu-
ments — specifically, should it print a blank line or nothing at all? All the
current echo implementations we know print a blank line, but past versions
didn’t, and there wete once great debates on the subject. Doug Mcllroy
imparted the right feelings of mysticism in his discussion of the topic:
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The UNIX and the Echo

There dwelt in the land of New Jersey the UNIX, a fair maid whom savants traveled far to
admire. Dazzled by her purity, all sought to espouse her, one for her virginal grace, another for
her polished civility, yet another for her agility in performing exacting tasks seldom accomplished
even in much richer lands. So large of heart and accommodating of nature was she that the UNIX
adopted all but the most insufferably rich of her suitors. Soon many offspring grew and prospered
and spread to the ends of the earth.

Nature herself smiled and answered to the UNIX more eagerly than to other mortal beings.
Humbler folk, who knew little of more courtly manners, delighted in her echo, so precise and crys-
tal clear they scarce believed she could be answered by the same rocks and woods that so garbled
their own shouts into the wilderness. And the compliant UNIx obliged with perfect echoes of what-
ever she was asked.

When one impatient swain asked the unix, ‘Echo nothing,” the uNix obligingly opened her
mouth, echoed nothing, and closed it again.

‘Whatever do you mean,” the youth demanded, ‘opening your mouth like that? Henceforth
never open your mouth when you are supposed to echo nothing!” And the UNIX obliged.

‘But I want a perfect performance, even when you echo nothing,” pleaded a sensitive youth,
‘and no perfect echoes can come from a closed mouth.” Not wishing to offend either one, the UNIX
agreed to say different nothings for the impatient youth and for the sensitive youth. She called the
sensitive nothing ‘\n.’

Yet now when she said “\n,” she was really not saying nothing so she had to open her mouth
twice, once to say “\n,” and once to say nothing, and so she did not please the sensitive youth, who
said forthwith, ‘The \n sounds like a perfect nothing to me, but the second one ruins it. I want you
to take back one of them.” So the UNIX, who could not abide offending, agreed to undo some
echoes, and called that “c.” Now the sensitive youth could hear a perfect echo of nothing by asking
for “n’ and \¢’ together. But they say that he died of a surfeit of notation before he ever heard
one.

Exercise 3-3. Predict what each of the following grep commands will do, then verify
your understanding.

grep \$ grep \\

grep \\$ grep \\\\
grep \\\$ grep "\$"
grep '\$' grep 'u$:
grep AN X4 grep ngn

A file containing these commands themselves makes a good test case if you want to
experiment. O

Exercise 3-4. How do you tell grep to search for a pattern beginning with a ‘~’? Why
doesn’t quoting the argument help? Hint: investigate the -e option. O

Exercise 3-5. Consider

$ echo »/*

Does this produce all names in all directories? In what order do the names appear? O

Exercise 3-6. (Trick question) How do you get a / into a filename (i.e., a / that
doesn’t separate components of the path)? O

Exercise 3-7. What happens with
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$ cat x y >y
and with

$ cat x >>x

Think before rushing off to try them. O
Exercise 3-8. If you type

$ rm *

why can’t rm warn you that you’re about to delete all your files? O

3.3 Creating new commands

It’s now time to move on to something that we promised in Chapter 1 —
how to create new commands out of old ones.

Given a sequence of commands that is to be repeated more than a few
times, it would be convenient to make it into a ‘“‘new’ command with its own
name, so you can use it like a regular command. To be specific, suppose you
intend to count users frequently with the pipeline

$ who | we -1

that was mentioned in Chapter 1, and you want to make a new program nu to
do that.

The first step is to create an ordinary file that contains ‘who | wc -1’.
You can use a favorite editor, or you can get creative:

$ echo ’‘who | wc -1’ >nu

(Without the quotes, what would appear in nu?)

As we said in Chapter 1, the shell is a program just like an editor or who or
wc; its name is sh. And since it’s a program, you can run it and redirect its
input. So run the shell with its input coming from the file nu instead of the
terminal:

$ who
you tty2 Sep 28 07:51
rhh tty4 Sep 28 10:02
moh tty5 Sep 28 09:38
ava tty6 Sep 28 10:17
$ cat nu
who | wc -1
$ sh <nu

4
$

The output is the same as it would have been if you had typed who | wec -1
at the terminal.

Again like most other programs, the shell takes its input from a file if one
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is named as an argument; you could have written

$ sh nu

for the same result. But it’s a nuisance to have to type ‘“‘sh” in either case: it’s
longer, and it creates a distinction between programs written in, say, C and
ones written by connecting programs with the shell.T Therefore, if a file is exe-
cutable and if it contains text, then the shell assumes it to be a file of shell
commands. Such a file is called a shell file. All you have to do is to make nu
executable, once:

$ chmod +x nu

and thereafter you can invoke it with

$ nu

From now on, users of nu cannot tell, just by running it, that you implemented
it in this easy way.

The way the shell actually runs nu is to create a new shell process exactly
as if you had typed

$ sh nu

This child shell is called a sub-shell — a shell process invoked by your current
shell. sh nu is not the same as sh <nu, because its standard input is still con-
nected to the terminal.

As it stands, nu works only if it’s in your current directory (provided, of
course, that the current directory is in your PATH, which we will assume from
now on). To make nu part of your repertoire regardless of what directory
you’re in, move it to your private bin directory, and add /usr/you/bin to
your search path:

$ pwd
/usr/you
$ mkdir bin Make a bin if you haven’t already
$ echo $PATH Check PATH for sure
:/usr/you/bin:/bin:/usr/bin  Should look like this
$ mv nu bin Install nu
$ 1s nu
nu not found It’s really gone from current directory
$ nu
4 But it’s found by the shell
$

Of course, your PATH should be set properly by your .profile, so you don’t
have to reset it every time you log in.
There are other simple commands that you might create this way to tailor

T Nonetheless, it is a distinction made on most other operating systems.
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your environment to your own taste. Some that we have found convenient

include

e cs, which echoes the proper sequence of mysterious characters to clear the
screen on your terminal (24 newlines is a fairly general implementation);

e what, which runs who and ps -a to tell who’s logged on and what they are
doing;

e where, which prints the identifying name of the UNIX system you’re using
— it’s handy if you use several regularly. (Setting PS1 serves a similar
purpose.)

Exercise 3-9. Look in /bin and /usr/bin to see how many commands are actually
shell files. Can you do it with one command? Hint: £ile(l). How accurate are
guesses based on file length? O

3.4 Command arguments and parameters

Although nu is adequate as it stands, most shell programs interpret argu-
ments, so that, for example, filenames and options can be specified when the
program is run.

Suppose we want to make a program called cx to change the mode of a file
to executable, so

$ cx nu

is a shorthand for
$ chmod +x nu
We already know almost enough to do this. We need a file called cx whose
contents are
chmod +x filename
The only new thing we need to know is how to tell cx what the name of the
file is, since it will be different each time cx is run.
When the shell executes a file of commands, each occurrence of $1 is

replaced by the first argument, each $2 is replaced by the second argument,
and so on through $9. So if the file cx contains

chmod +x $1
when the command

$ cx nu

”

is run, the sub-shell replaces ““$1”’ by its first argument, “‘nu.
Let’s look at the whole sequence of operations:
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$ echo ‘chmod +x $1’ >cx Create cx originally
$ sh cx cx Make cx itself executable
$ echo echo Hi, there! >hello Make a test program
$ hello Try it

hello: cannot execute

$ cx hello Make it executable
$ hello Try again

Hi, there! It works

$ mv cx /usr/you/bin Install cx

$ rm hello Clean up

$

Notice that we said

$ sh cx cx

exactly as the shell would have automatically done if cx were already execut-
able and we typed

$ cx cx

What if you want to handle more than one argument, for example to make
a program like cx handle several files at once? A crude first cut is to put nine
arguments into the shell program, as in

chmod +x $1 $2 $3 $4 $5 $6 $7 $8 $9

(It only works up to $9, because the string $10 is parsed as ““first argument,
$1, followed by a 0”!) If the user of this shell file provides fewer than nine
arguments, the missing ones are null strings; the effect is that only the argu-
ments that were actually provided are passed to chmod by the sub-shell. So
this implementation works, but it’s obviously unclean, and it fails if more than
nine arguments are provided.

Anticipating this problem, the shell provides a shorthand $ that means “all
the arguments.” The proper way to define cx, then, is

chmod +x $#*

which works regardless of how many arguments are provided.
With $+ added to your repertoire, you can make some convenient shell
files, such as 1c or m:

$ cd /usr/yous/bin

$ cat lc

# lc: count number of lines in files
we -1 $=

$ cat m

# m: a concise way to type mail
mail $#*

$

Both can sensibly be used without arguments. If there are no arguments, $*
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will be null, and no arguments at all will be passed to we or mail. With or
without arguments, the command is invoked properly:

$ lc /usr/yous/bin/*

1 /usr/you/bin/cx
/usr/you/bin/lc
/usr/you/bin/m
/usr/you/bin/nu
/usr/you/bin/what
/usr/you/bin/where

9 total
$ 1s susr/yous/bin ! 1lc

6

SN NN

$

These commands and the others in this chapter are examples of personal
programs, the sort of things you write for yourself and put in your bin, but
are unlikely to make publicly available because they are too dependent on per-
sonal taste. In Chapter 5 we will address the issues of writing shell programs
suitable for public use.

The arguments to a shell file need not be filenames. For example, consider
searching a personal telephone directory. If you have a file named
/usr/you/lib/phone-book that contains lines like

dial-a-joke 212-976-3838
dial-a-prayer 212-246-4200
dial santa 212-976-3636

dow jones report 212-976-4141

then the grep command can be used to search it. (Your own 1ib directory is
a good place to store such personal data bases.) Since grep doesn’t care about
the format of information, you can search for names, addresses, zip codes or
anything else that you like. Let’s make a directory assistance program, which
we’ll call 411 in honor of the telephone directory assistance number where we
live:

$ echo ’“grep $* /usr/you/lib/phone-book’ >411

$ cx 411

$ 411 joke

dial-a-joke 212-976-3838

$ 411 dial

dial-a-joke 212-976-3838

dial-a-prayer 212-246-4200

dial santa 212-976-3636

$ 411 ‘dow jones”’

grep: can’t open jones Something is wrong

$

The final example is included to show a potential problem: even though dow
jones is presented to 411 as a single argument, it contains a space and is no~
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longer in quotes, so the sub-shell interpreting the 411 command converts it
into two arguments to grep: it’s as if you had typed

$ grep dow jones /usr/you/lib/phone-book

and that’s obviously wrong.

One remedy relies on the way the shell treats double quotes. Although
anything quoted with ‘...’ is inviolate, the shell looks inside "..." for $’s, \’s,
and *...%’s. So if you revise 411 to look like

grep "$*" /usr/you/lib/phone-book

the $» will be replaced by the arguments, but it will be passed to grep as a
single argument even if it contains spaces.

$ 411 dow jones
dow jones report 212-976-4141
$

By the way, you can make grep (and thus 411) case-independent with the
-y option:

$ grep -y pattern

with -y, lower case letters in pattern will also match upper case letters in the
input. (This option is in 7th Edition grep, but is absent from some other sys-
tems.)

There are fine points about command arguments that we are skipping over
until Chapter 5, but one is worth noting here. The argument $0 is the name
of the program being executed — in cx, $0 is “‘cx.” A novel use of $0 is in
the implementation of the programs 2, 3, 4, ..., which print their output in
that many columns:

$ who [/ 2

drh ttyo0 Sep 28 21:23 cvw tty5 Sep 28 21:09

dmr tty6é Sep 28 22:10 scj tty7 Sep 28 22:11

you tty9 Sep 28 23:00 jlb ttyb Sep 28 19:58

$

The implementations of 2, 3, ... are identical; in fact they are links to the
same file:

$ In 2 3; In 2 4; 1n 2 5; 1n 2 6
$ 1s -1i [1-9]

16722 -rwxrwxrwx 5 you 51 Sep 28 23:21 2
16722 -rwXrwxrwx 5 you 51 Sep 28 23:21 3
16722 -rwxrwxrwx 5 you 51 Sep 28 23:21 4
16722 -rwXrwxrwx 5 you 51 Sep 28 23:21 5
16722 -rwxrwxrwx 5 you 51 Sep 28 23:21 6
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$ 1s /usr/you/bin | 5

2 3 4 411 5
6 cx 1c m nu
what where

$ cat 5

# 2, 3, ...: print in n columns

pr -$0 -t -11 $=*

$

The -t option turns off the heading at the top of the page and the -1n option
sets the page length to n lines. The name of the program becomes the
number-of-columns argument to pr, so the output is printed a row at a time in
the number of columns specified by $0.

3.5 Program output as arguments

Let us turn now from command arguments within a shell file to the genera-
tion of arguments. Certainly filename expansion from metacharacters like * is
the most common way to generate arguments (other than by providing them
explicitly), but another good way is by running a program. The output of any
program can be placed in a command line by enclosing the invocation in back-
quotes *...%:

$ echo At the tone the time will be ‘date’.
At the tone the time will be Thu Sep 29 00:02:15 EDT 1983.
$

A small change illustrates that *...* is interpreted inside double quotes "...":

$ echo "At the tone

> the time will be ‘date‘.”

At the tone

the time will be Thu Sep 29 00:03:07 EDT 1983.
$

As another example, suppose you want to send mail to a list of people
whose login names are in the file mailinglist. A clumsy way to handle this
is to edit mailinglist into a suitable mail command and present it to the
shell, but it’s far easier to say

$ mail ‘cat mailinglist' <letter

This runs cat to produce the list of user names, and those become the argu-
ments to mail. (When interpreting output in backquotes as arguments, the
shell treats newlines as word separators, not command-line terminators; this
subject is discussed fully in Chapter 5.) Backquotes are easy enough to use
that there’s really no need for a separate mailing-list option to the mail com-
mand.

A slightly different approach is to convert the file mailinglist from just
a list of names into a program that prints the list of names:
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$ cat mailinglist New version
echo don whr ejs mb

$ cx mailinglist

$ mailinglist

don whr ejs mb

$

Now mailing the letter to the people on the list becomes
$ mail ‘mailinglist‘® <letter

With the addition of one more program, it’s even possible to modify the
user list interactively. The program is called pick:

$ pick arguments ...

presents the arguments one at a time and waits after each for a response. The
output of pick is those arguments selected by y (for ‘“‘yes’) responses; any
other response causes the argument to be discarded. For example,

1

$ pr ‘pick x.c' | lpr

presents each filename that ends in .c; those selected are printed with pr and
1pr. (pick is not part of the 7th Edition, but it’s so easy and useful that
we’ve included versions of it in Chapters 5 and 6.)

Suppose you have the second version of mailinglist. Then

$ mail ‘pick \‘mailinglist\‘'‘' <letter
don? y

whr?

ejs?

mb? y

$

sends the letter to don and mb. Notice that there are nested backquotes; the
backslashes prevent the interpretation of the inner ‘... during the parsing of
the outer one.

Exercise 3-10. If the backslashes are omitted in
$ echo ‘echo \‘date\'®

what happens? O

Exercise 3-11. Try
$ ‘date’

and explain the result. O

Exercise 3-12.
$ grep -1 pattern filenames

lists the filenames in which there was a match of pattern, but produces no other output.
Try some variations on
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$ command ‘grep -1 pattern filenames*

m}

3.6 Shell variables

The shell has variables, like those in most programming languages, which
in shell jargon are sometimes called parameters. Strings such as $1 are posi-
tional parameters — variables that hold the arguments to a shell file. The digit
indicates the position on the command line. We have seen other shell vari-
ables: PATH is the list of directories to search for commands, HOME is your
login directory, and so on. Unlike variables in a regular language, the argu-
ment variables cannot be changed; although PATH is a variable whose value is
$PATH, there is no variable 1 whose value is $1. $1 is nothing more than a
compact notation for the first argument.

Leaving positional parameters aside, shell variables can be created, accessed
and modified. For example,

$ PATH=:/bin:/usr/bin

is an assignment that changes the search path. There must be no spaces
around the equals sign, and the assigned value must be a single word, which
means it must be quoted if it contains shell metacharacters that should not be
interpreted. The value of a variable is extracted by preceding the name by a
dollar sign:

$ PATH=$PATH:/usr/games

$ echo $PATH
:/usr/you/bin:/bin:/usr/bin:/usr/games

$ PATH=:/usr/you/bin:/bin:/usr/bin Restore it
$

Not all variables are special to the shell. You can create new variables by
assigning them values; traditionally, variables with special meaning are spelled
in upper case, so ordinary names are in lower case. One of the common uses
of variables is to remember long strings such as pathnames:

$ pwd

/usr/you/bin

$ dir=‘pwd" Remember where we are

$ cd /usr/mary/bin Go somewhere else

$ In $dir/cx . Use the variable in a filename
$ ... Work for a while

$ cod $dir Return

$ pwd

/usr/you/bin

$

The shell built-in command set displays the values of all your defined vari-
ables. To see just one or two variables, echo is more appropriate.
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$ set
HOME=/usr/you
IFS=

PATH=:/usr/yous/bin:/bin:/usr/bin
PS1=$

PS2=>

dir=/usr/you/bin

$ echo $dir

/usr/you/bin

$

The value of a variable is associated with the shell that creates it, and is not
automatically passed to the shell’s children.

$ x=Hello Create x
$ sh New shell
$ echo $x
Newline only: x undefined in the sub-shell

$ ctl-d Leave this shell

$ Back in original shell
$ echo $x

Hello x still defined

$

This mears that a shell file cannot change the value of a variable, because the
shell file is run by a sub-shell:

$ echo ‘x="Good Bye" Make a two-line shell file ...
> echo $x’ >setx ... to set and print x

$ cat setx

x="Good Bye"

echo $x

$ echo $x

Hello x is Hello in original shell
$ sh setx

Good Bye x is Good Bye in sub-shell...
$ echo $x

Hello ...but still Hello in this shell
$

There are times when using a shell file to change shell variables would be
useful, however. An obvious example is a file to add a new directory to your
PATH. The shell therefore provides a command ‘.’ (dot) that executes the
commands in a file in the current shell, rather than in a sub-shell. This was
originally invented so people could conveniently re-execute their .profile
files without having to log in again, but it has other uses:
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$ cat /usr/yous/bin/games

PATH=$PATH: /usr/games Append /usr/games fo PATH
$ echo $PATH

:/usr/yous/bin:/bin:/usr/bin

$ . games

$ echo $PATH

:/usr/you/bin:/bin:/usr/bin:/usr/games

$

The file for the ‘.’ command is searched for with the PATH mechanism, so it
can be placed in your bin directory.

When a file is executing with ‘.’, it is only superficially like running a shell
file. The file is not ‘“‘executed” in the usual sense of the word. Instead, the
commands in it are interpreted exactly as if you had typed them interactively
— the standard input of the shell is temporarily redirected to come from the
file. Since the file is read but not executed, it need not have execute permis-
sions. Another difference is that the file does not receive command line argu-
ments; instead, $1, $2 and the rest are empty. It would be nice if arguments
were passed, but they are not.

The other way to set the value of a variable in a sub-shell is to assign to it
explicitly on the command line before the command itself:

$ echo ‘echo $x’ >echox
$ cx echox
$ echo $x
Hello As before
$ echox
X not set in sub-shell
$ x=Hi echox
Hi Value of x passed to sub-shell
$

(Originally, assignments anywhere in the command line were passed to the
command, but this interfered with dd(1).)

The ‘.’ mechanism should be used to change the value of a variable per-
manently, while in-line assignments should be used for temporary changes. As
an example, consider again searching /usr/games for commands, with the
directory not in your PATH:

$ 1ls /usr/games | grep fort

fortune Fortune cookie command

$ fortune

fortune: not found

$ echo $PATH

:/usr/you/bin:/bin:/usr/bin /usr/games not in PATH
$ PATH=/usr/games fortune

Ring the bell; close the book; quench the candle.
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$ echo $PATH

:/usr/you/bin:/bin:/usr/bin PATH unchanged
$ cat /usr/you/bin/games
PATH=$PATH: /usr/games games command still there

$ . games

$ fortune

Premature optimization is the root of all evil - Knuth

$ echo $PATH

:/usr/you/bin:/bin:/usr/bin:/usr/games PATH changed this time
$

It’s possible to exploit both these mechanisms in a single shell file. A
slightly different games command can be used to run a single game without
changing PATH, or can set PATH permanently to include /usr/games:

$ cat /usr/yous/bin/games

PATH=$PATH: /usr/games $=* Note the $+

$ cx /usr/yous/bin/games

$ echo $PATH

:/usr/yous/bin:/bin:/usr/bin Doesn’t have /usr/games
$ games fortune

I’d give my right arm to be ambidextrous.

$ echo $PATH

:/usr/you/bin:/bin:/usr/bin Still doesn’t

$ . games

$ echo $PATH

:/usr/you/bin:/bin:/usr/bin:/usr/games Now it does
$ fortune

He who hesitates is sometimes saved.

$

The first call to games ran the shell file in a sub-shell, where PATH was tem-
porarily modified to include /usr/games. The second example instead inter-
preted the file in the current shell, with $* the empty string, so there was no
command on the line, and PATH was modified. Using games in these two
ways is tricky, but results in a facility that is convenient and natural to use.
When you want to make the value of a variable accessible in sub-shells, the
shell’s export command should be used. (You might think about why there
is no way to export the value of a variable from a sub-shell to its parent.)
Here is one of our earlier examples, this time with the variable exported:

$ x=Hello

$ export x

$ sh New shell

$ echo $x

Hello x known in sub-shell
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$ x=’Good Bye’ Change its value

$ echo $x

Good Bye

$ cil-d Leave this shell

$ Back in original shell
$ echo $x

Hello x still Hello

$

export has subtle semantics, but for day-to-day purposes at least, a rule of
thumb suffices: don’t export temporary variables set for short-term conveni-
ence, but always export variables you want set in all your shells and sub-shells
(including, for example, shells started with the ed’s ! command). Therefore,
variables special to the shell, such as PATH and HOME, should be exported.

Exercise 3-13. Why do we always include the current directory in PATH? Where
should it be placed? O

3.7 More on I/O redirection

The standard error was invented so that error messages would always
appear on the terminal:

$ diff filel1 fiel2 >diff.out
diff: fiel2: No such file or directory
$

It’s certainly desirable that error messages work this way — it would be most
unfortunate if they disappeared into diff.out, leaving you with the impres-
sion that the erroneous diff command had worked properly.

Every program has three default files established when it starts, numbered
by small integers called file descriptors (which we will return to in Chapter 7).
The standard input, 0, and the standard output, 1, which we are already fami-
liar with, are often redirected from and into files and pipes. The last, num-
bered 2, is the standard error output, and normally finds its way to your termi-
nal.

Sometimes programs produce output on the standard error even when they
work properly. One common example is the program time, which runs a
command and then reports on the standard error how much time it took.

$ time wc ch3.1
931 4288 22691 ch3.1

real 1.
user 0.
sys 0.

[ =}
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$ time wc ch3.1 >wc.out

real 2.0
user 0.4
sys 0.3
$ time wc ch3.1 >wc.out 2>time.out

$ cat time.out

real 1.0
user 0.4
sys 0.3
$

The construction 2>filename (no spaces are allowed between the 2 and the >)
directs the standard error output in‘/to the file; it’s syntactically graceless but it
does the job. (The times produced by time are not very accurate for such a
short test as this one, but for a sequence of longer tests the numbers are useful
and reasonably trustworthy, and you might well want to save them for further
analysis; see, for example, Table 8.1.)
It is also possible to merge the two output streams:
$ time wc ch3.1 >wc.out 2>&1

$ cat wc.out
931 4288 22691 ch3.1

real 1.0
user 0.4
sys 0.3
$

The notation 2>&1 tells the shell to put the standard error on the same stream
as the standard output. There is not much mnemonic value to the ampersand;
it’s simply an idiom to be learned. You can also use 1>&2 to add the standard
output to the standard error:

echo ... 1>&2

prints on the standard error. In shell files, it prevents the messages from van-
ishing accidentally down a pipe or into a file.

The shell provides a mechanism so you can put the standard input for a
command along with the command, rather than in a separate file, so the shell
file can be completely self-contained. Our directory information program 411
could be written
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$ cat 411

grep "$+*" <<End

dial-a-joke 212-976-3838
dial-a-prayer 212-246-4200
dial santa 212-976-3636

dow jones report 212-976-4141
End

$

The shell jargon for this construction is a here document; it means that the
input is right here instead of in a file somewhere. The << signals the construc-
tion; the word that follows (End in our example) is used to delimit the input,
which is taken to be everything up to an occurrence of that word on a line by
itself. The shell substitutes for $, *...*, and \ in a here document, unless
some part of the word is quoted with quotes or a backslash; in that case, the
whole document is taken literally.

We’ll return to here documents at the end of the chapter, with a much more
interesting example.

Table 3.2 lists the various input-output redirections that the shell under-
stands.

Exercise 3-14. Compare the here-document version of 411 with the original. Which is
easier to maintain? Which is a better basis for a general service? O

Table 3.2: Shell I/O Redirections

>file direct standard output to file
>>file append standard output to file
<file take standard input from file

Pi1ip2 connect standard output of program p; to input of p,

obsolete synonym for |

n>file direct output from file descriptor n to file

n>>file  append output from file descriptor n to file

n>8&m merge output from file descriptor n with file descriptor m

n<&m merge input from file descriptor n with file descriptor m

<<s here document: take standard input until next s at
beginning of a line; substitute for $, *...*, and \

<<\s here document with no substitution

<<’s’ here document with no substitution

3.8 Looping in shell programs

The shell is actually a programming language: it has variables, loops,
decision-making, and so on. We will discuss basic looping here, and talk more
about control flow in Chapter 5.
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Looping over a set of filenames is very common, and the shell’s for state-
ment is the only shell control-flow statement that you might commonly type at
the terminal rather than putting in a file for later execution. The syntax is:

for var in list of words
do

commands
done

For example, a for statement to echo filenames one per line is just

$ for i in =

> do

> echo $i
> done

The “i” can be any shell variable, although i is traditional. Note that the
variable’s value is accessed by $i, but that the for loop refers to the variable
as i. We used * to pick up all the files in the current directory, but any other
list of arguments can be used. Normally you want to do something more
interesting than merely printing filenames. One thing we do frequently is to
compare a set of files with previous versions. For example, to compare the old
version of Chapter 2 (kept in directory old) with the current one:

$ 1s ch2.x | 5

ch2.1 ch2.2 ch2.3 ch2.4 ch2.5
ch2.6 ch2.7

$ for i in ch2.=

> do

> echo $i:

> diff -b old/$i $i

> echo Add a blank line for readability
> done | pr -h "diff ‘pwd‘/old ‘pwd‘" | lpr &

3712 Process-id

$

We piped the output into pr and lpr just to illustrate that it’s possible: the
standard output of the programs within a for goes to the standard output of
the for itself. We put a fancy heading on the output with the -h option of
pr, using two embedded calls of pwd. And we set the whole sequence running
asynchronously (&) so we wouldn’t have to wait for it; the & applies to the
entire loop and pipeline.

We prefer to format a for statement as shown, but you can compress it
somewhat. The main limitations are that do and done are only recognized as
keywords when they appear right after a newline or semicolon. Depending on
the size of the for, it’s sometimes better to write it all on one line:

for i in list; do commands; done

You should use the for loop for multiple commands, or where the built-in
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argument processing in individual commands is not suitable. But don’t use it
when the individual command will already loop over filenames:

# Poor idea:
for i in $*
do
chmod +x $1i
done

is inferior to

chmod +x $*

because the for loop executes a separate chmod for each file, which is more
expensive in computer resources. (Be sure that you understand the difference
between

for i in «
which loops over all filenames in the current directory, and

for i in $#*

which loops over all arguments to the shell file.)
The argument list for a for most often comes from pattern matching on
filenames, but it can come from anything. It could be

Ry

$ for i in ‘cat ...°

or arguments could just be typed. For example, earlier in this chapter we
created a group of programs for multi-column printing, called 2, 3, and so on.
These are just links to a single file that can be made, once the file 2 has been
written, by

$ for i in 3 4 5 6; do 1n 2 $i; done
$

As a somewhat more interesting use of the for, we could use pick to
select which files to compare with those in the backup directory:
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$ for i in ‘pick ch2.*'
> do

> echo $i:

> diff old/$i $i
>

1 1

done i1 pr i lpr

ch2.1? y

ch2.2?

ch2.3?

ch2.4? y

ch2.5? y

ch2.6?

ch2.7?

$

It’s obvious that this locop should be placed in a shell file to save typing next
time: if you’ve done something twice, you’re likely to do it again.

Exercise 3-15. If the diff loop were placed in a shell file, would you put the pick in
the shell file? Why or why not? O

Exercise 3-16. What happens if the last line of the loop above is
> done ! pr | lpr &

that is, ends with an ampersand? See if you can figure it out, then try it. O

3.9 bundle: putting it all together

To give something of the flavor of how shell files develop, let’s work
through a larger example. Pretend you have received mail from a friend on
another machine, say somewhere!bob,f who would like copies of the shell
files in your bin. The simplest way to send them is by return mail, so you
might start by typing

$ cd /usr/you/bin

done | mail somewhere!bob

$ for i in ‘pick =*'

> do

> echo ============ This is file $i ============
> cat $i

>

$

But look at it from somewhere !bob’s viewpoint: he’s going to get a mail mes-
sage with all the files clearly demarcated, but he’ll need to use an editor to
break them into their component files. The flash of insight is that a properly-
constructed mail message could automatically unpack itself so the recipient
needn’t do any work. That implies it should be a shell file containing both the

T There are several notations for remote machine addresses. The form machine!person is most
common. See mail(l).
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files and the instructions to unpack it.

A second insight is that the shell’s here documents are a convenient way to
a command invocation and the data for the command. The rest of the
job is just getting the quotes right. Here’s a working program, called bundle,
that groups the files together into a self-explanatory shell file on its standard

combine

output:

Quoting
ignored.

Naturally, you should try it out before inflicting it on somewhere ! bob:

# bundle:

$ cat bundle

echo “# To unbundle, sh this file”’
for i

do
echo "echo $i 1>&2"
echo "cat >$i <<’End of $i’"
cat $i
echo "End of $i"
done
$

“End of $i” ensures that any shell metacharacters in the files will be

$ bundle cx lc >junk Make a trial bundle

$ cat junk

# To unbundle, sh this file

echo cx 1>&2

cat >cx <<’End of cx’

chmod +x $+*

End of cx

echo lc 1>&2

cat >lc <<’End of 1lc’

# lc: count number of lines in files
we -1 $=

End of 1c

$ mkdir test

$ cd test

$ sh ../junk Try it out
cx

1c

$ 1s

cx

1c

group files into distribution package
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$ cat cx

chmod +x $*

$ cat lc

# lc: count number of lines in files

we -1 $+ Looks good
$ cd ..

$ rm junk test/#; rmdir test Clean up

$ pwd

/usr/you/bin

$ bundle ‘pick *' | mail somewhere!bob Send the files

There’s a problem if one of the files you’re sending happens to contain a
line of the form

End of filename

but it’s a low-probability event. To make bundle utterly safe, we need a
thing or two from later chapters, but it’s eminently usable and convenient as it
stands.

bundle illustrates much of the flexibility of the UNIX environment: it uses
shell loops, I/O redirection, here documents and shell files, it interfaces
directly to mail, and, perhaps most interesting, it is a program that creates a
program. It’s one of the prettiest shell programs we know — a few lines of
code tkat do something simple, useful and elegant.

Exercise 3-17. How would you use bundle to send all the files in a directory and its
subdirectories? Hint: shell files can be recursive. O
Exercise 3-18. Modify bundle so it includes with each file the information garnered

from 1s -1, particularly permissions and date of last change. Contrast the facilities of
bundle with the archive program ar(1). O

3.10 Why a programmable shell?

The UNIX shell isn’t typical of command interpreters: although it lets you
run commands in the usual way, because it is a programming language it can
accomplish mu\c‘h\more. It’s worth a brief look back at what we’ve seen, in
part because theré\’s\ a lot of material in this chapter but more because we
promised to talk about ‘“‘commonly used features” and then wrote about 30
pages of shell programming examples. But when using the shell you write
little one-line programs all the time: a pipeline is a program, as is our “Tea is
ready’” example. The shell works like that: you program it constantly, but it’s
so easy and natural (once you're familiar with it) that you don’t think of it as
programming.

The shell does some things, like looping, I/O redirection with < and >, and
filename expansion with *, so that no program need worry about them, and
more importantly, so that the application of these facilities is uniform across all
programs. Other features, such as shell files and pipes, are really provided by
the kernel, but the shell gives a natural syntax for creating them. They go
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beyond convenience, to actually increasing the capabilities of the system.

Much of the power and convenience of the shell derives from the UNIX ker-
nel underneath it; for example, although the shell sets up pipes, the kernel
actually moves the data through them. The way the system treats executable
files makes it possible to write shell files so that they are run exactly like com-
piled programs. The user needn’t be aware that they are command files —
they aren’t invoked with a special command like RUN. Also, the shell is a pro-
gram itself, not part of the kernel, so it can be tuned, extended and used like
any other program. This idea is not unique to the UNIX system, but it has been
exploited better there than anywhere else.

In Chapter 5, we’ll return to the subject of shell programming, but you
should keep in mind that whatever you’re doing with the shell, you’re pro-
gramming it — that’s largely why it works so well.

History and bibliographic notes

The shell has been programmable from earliest times. Originally there
were separate commands for if, goto, and labels, and the goto command
operated by scanning the input file from the beginning looking for the right
label. (Because it is not possible to re-read a pipe, it was not possible to pipe
into a shell file that had any control flow).

The 7th Edition shell was written originally by Steve Bourne with some
help and ideas from John Mashey. It contains everything needed for program-
ming, as we shall see in Chapter 5. In addition, input and output are rational-
ized: it is possible to redirect I/O into and out of shell programs without limit.
The parsing of filename metacharacters is also internal to this shell; it had been
a separate program in earlier versions, which had to live on very small
machines.

One other major shell that you may run into (you may already be using it
by preference) is csh, the so-called “C shell” developed at Berkeley by Bill
Joy by building on the 6th Edition shell. The C shell has gone further than the
Bourne shell in the direction of helping interaction — most notably, it provides
a history mechanism that permits shorthand repetition (perhaps with slight
editing) of previously issued commands. The syntax is also somewhat dif-
ferent. But because it is based on an earlier shell, it has less of the program-
ming convenience; it is more an interactive command interpreter than a pro-
gramming language. In particular, it is not possible to pipe into or out of con-
trol flow constructs.

pick was invented by Tom Duff, and bundle was invented independently
by Alan Hewett and James Gosling.
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There is a large family of UNIX programs that read some input, perform a
simple transformation on it, and write some output. Examples include grep
and tail to select part of the input, sort to sort it, wc to count it, and so on.
Such programs are called filters.

This chapter discusses the most frequently used filters. We begin with
grep, concentrating on patterns more complicated than those illustrated in
Chapter 1. We will also present two other members of the grep family,
egrep and fgrep.

The next section briefly describes a few other useful filters, including tr
for character transliteration, dd for dealing with data from other systems, and
uniq for detecting repeated text lines. sort is also presented in more detail
than in Chapter 1.

The remainder of the chapter is devoted to two general purpose ‘‘data
transformers” or ‘‘programmable filters.” They are called programmable
because the particular transformation is expressed as a program in a simple
programming language. Different programs can produce very different
transformations.

The programs are sed, which stands for stream editor, and awk, named
after its authors. Both are derived from a generalization of grep:

$ program pattern-action filenames ...

scans the files in sequence, looking for lines that match a pattern; when one is
found a corresponding action is performed. For grep, the pattern is a regular
expression as in ed, and the default action is to print each line that matches
the pattern.

sed and awk generalize both the patterns and the actions. sed is a deriva-
tive of ed that takes a “program” of editor commands and streams data from
the files past them, doing the commands of the program on every line. awk is
not as convenient for text substitution as sed is, but it includes arithmetic,
variables, built-in functions, and a programming language that looks quite a bit
like C. This chapter doesn’t have the complete story on either program;
Volume 2B of the UNIX Programmer’s Manual has tutorials on both.

101
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4.1 The grep family

We mentioned grep briefly in Chapter 1, and have used it in examples
since then.

$ grep pattern filenames. ..

searches the named files or the standard input and prints each line that con-
tains an instance of the pattern. grep is invaluable for finding occurrences of
variables in programs or words in documents, or for selecting parts of the out-
put of a program:

$ grep -n variable *.[ch] Locate variable in C source

$ grep From $MAIL Print message headers in mailbox
$ grep From $MAIL | grep -v mary Headers that didn’t come from mar
$ grep -y mary $HOME/lib/phone-book Find mary’s phone number

$ who | grep mary See if mary is logged in

$ 1s | grep -v temp Filenames that don’t contain temp

The option -n prints line numbers, -v inverts the sense of the test, and -y
makes lower case letters in the pattern match letters of either case in the file
(upper case still matches only upper case).

In all the examples we’ve seen so far, grep has looked for ordinary strings
of letters and numbers. But grep can actually search for much more compli-
cated patterns: grep interprets expressions in a simple language for describing
strings.

Technically, the patterns are a slightly restricted form of the string specif-
iers called regular expressions. grep interprets the same regular expressions
as ed; in fact, grep was originally created (in an evening) by straightforward
surgery on ed.

Regular expressions are specified by giving special meaning to certain char-
acters, just like the #, etc., used by the shell. There are a few more metachar-
acters, and, regrettably, differences in meanings. Table 4.1 shows all the regu-
lar expression metacharacters, but we will review them briefly here.

The metacharacters ~ and $ ‘“‘anchor” the pattern to the beginning (") or
end ($) of the line. For example,

$ grep From $MAIL
locates lines containing From in your mailbox, but
$ grep ’‘“From’ $MAIL

prints lines that begin with From, which are more likely to be message header
lines. Regular expression metacharacters overlap with shell metacharacters, so
it’s always a good idea to enclose grep patterns in single quotes.

grep supports character classes much like those in the shell, so [a-z]
matches any lower case letter. But there are differences; if a grep character
class begins with a circumflex ", the pattern matches any character except
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those in the class. Therefore, ["0-9] matches any non-digit. Also, in the
shell a backslash protects ] and - in a character class, but grep and ed
require that these characters appear where their meaning is unambiguous. For
example, [ 1[-] (sic) matches either an opening or closing square bracket or a
minus sign.

A period ‘.’ is equivalent to the shell’s ?: it matches any character. (The
period is probably the character with the most different meanings to different
UNIX programs.) Here are a couple of examples:

i grep ’°d’ List subdirectory names
$ 1s -1 { grep ""....... rw List files others can read and write

The ‘*’ and seven periods match any seven characters at the beginning of the
line, which when applied the output of 1s -1 means any permission string.

The closure operator # applies to the previous character or metacharacter
(including a character class) in the expression, and collectively they match any
number of successive matches of the character or metacharacter. For example,
x# matches a sequence of x’s as long as possible, [a-zA-Z]+ matches an
alphabetic string, .* matches anything up to a newline, and . *x matches any-
thing up to and including the last x on the line.

There are a couple of important things to note about closures. First, clo-
sure applies to only one character, so xy* matches an x followed by y’s, not a
sequence like xyxyxy. Second, ‘““any number” includes zero, so if you want at
least one character to be matched, you must duplicate it. For example, to
match a string of letters the correct expression is [a-zA-Z][a-zA-Z]% (a
letter followed by zero or more letters). The shell’s # filename matching char-
acter is similar to the regular expression . .

No grep regular expression matches a newline; the expressions are applied
to each line individually.

With regular expressions, grep is a simple programming language. For
example, recall that the second field of the password file is the encrypted pass-
word. This command searches for users without passwords:

$ grep “"[":]*::’ /etc/passwd

The pattern is: beginning of line, any number of non-colons, double colon.

grep is actually the oldest of a family of programs, the other members of
which are called fgrep and egrep. Their basic behavior is the same, but
fgrep searches for many literal strings simultaneously, while egrep interprets
true regular expressions — the same as grep, but with an “or” operator and
parentheses to group expressions, explained below.

Both fgrep and egrep accept a -f option to specify a file from which to
read the pattern. In the file, newlines separate patterns to be searched for in
parallel. If there are words you habitually misspell, for example, you could
check your documents for their occurrence by keeping them in a file, one per
line, and using fgrep:
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$ fgrep -f common-errors document

The regular expressions interpreted by egrep (also listed in Table 4.1) are the
same as in grep, with a couple of additions. Parentheses can be used to
group, so (xy)* matches any of the empty string, xy, xyxy, xyxyxy and so
on. The vertical bar | is an “or” operator; today i tomorrow matches either
today or tomorrow, as does to(dayimorrow). Finally, there are two
other closure operators in egrep, + and ?. The pattern x+ matches one or
more x’s, and x? matches zero or one x, but no more.

egrep is excellent at word games that involve searching the dictionary for
words with special properties. Our dictionary is Webster’s Second Interna-
tional, and is stored on-line as the list of words, one per line, without defini-
tions. Your system may have /usr/dict/words, a smaller dictionary
intended for checking spelling; look at it to check the format. Here’s a pattern
to find words that contain all five vowels in alphabetical order:

$ cat alphvowels
~[“aeioul*a["aeioul*e[aeioul*i[ "aeioul*o[ “aeioul*ul"aeiou]«*$
$ egrep -f alphvowels /usr/dict/web2 | 3

abstemious abstemiously abstentious
acheilous acheirous acleistous
affectious annelidous arsenious
arterious bacterious caesious
facetious facetiously fracedinous
majestious

$

The pattern is not enclosed in quotes in the file alphvowels. q}}égﬁ“ quotes
are used to enclose egrep patterns, the shell protects the cifmman s from
interpretation but strips off the quotes; egrep never sees them. Since the file
is not examined by the shell, however, quotes are not used around its contents.
We could have used grep for this example, but because of the way egrep
works, it is much faster when searching for patterns that include closures,
especially when scanning large files.

As another example, to find all words of six or more letters that have the
letters in alphabetical order:

$ cat monotonic
~a?b?c?d?e?£?7g?h?i?j?k?1?m?n?0?p?q?r?s?t?u?v?w?x?y?z?$

$ egrep -f monotonic /usr/dict/web2 | grep “...... !5

abdest acknow adipsy agnosy almost
befist behint beknow bijoux biopsy
chintz dehors dehort deinos dimpsy
egilops ghosty

$

(Egilops is a disease that attacks wheat.) Notice the use of grep to filter the
output of egrep.
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Why are there three grep programs? fgrep interprets no metacharacters,
but can look efficiently for thousands of words in parallel (once initialized, its
running time is independent of the number of words), and thus is used pri-
marily for tasks like bibliographic searches. The size of typical £grep patterns
is beyond the capacity of the algorithms used in grep and egrep. The dis-
tinction between grep and egrep is harder to justify. grep came much ear-
lier, uses the regular expressions familiar from ed, and has tagged regular
expressions and a wider set of options. egrep interprets more general expres-
sions (except for tagging), and runs significantly faster (with speed indepen-
dent of the pattern), but the standard version takes longer to start when the
expression is complicated. A newer version exists that starts immediately, so
egrep and grep could now be combined into a single pattern matching pro-
gram.

Table 4.1: grep and egrep Regular Expressions
(decreasing order of precedence)

c any non-special character ¢ matches itself
\¢ turn off any special meaning of character ¢
~ beginning of line
$ end of line
any single character
[...] any one of characters in ...; ranges like a-z are legal
[~...] any single character not in ...; ranges are legal
\n what the n’th \(...\') matched (grep only)
r zero or more occurrences of r
r+ one or more occurrences of r (egrep only)
re zero or one occurrences of r (egrep only)

rir2 rl followed by r2

riir2 rl or r2 (egrep only)

\(r\) tagged regular expression r (grep only); can be nested
(r) regular expression r (egrep only); can be nested

No regular expression matches a newline.

Exercise 4-1. Look up tagged regular expressions (\( and \)) in Appendix 1 or ed(1),
and use grep to search for palindromes — words spelled the same backwards as for-
wards. Hint: write a different pattern for each length of word. O

Exercise 4-2. The structure of grep is to read a single line, check for a match, then
loop. How would grep be affected if regular expressions could match newlines? O
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4.2 Other filters

The purpose of this section is to alert you to the existence and possibilities
of the rich set of small filters provided by the system, and to give a few exam-
ples of their use. This list is by no means all-inclusive — there are many more
that were part of the 7th Edition, and each installation creates some of its own.
All of the standard ones are described in Section 1 of the manual.

We begin with sort, which is probably the most useful of all. The basics
of sort were covered in Chapter 1: it sorts its input by line in ASCII order.
Although this is the obvious thing to do by default, there are lots of other ways
that one might want data sorted, and sort tries to cater to them by providing
lots of different options. For example, the -f option causes upper and lower
case to be ‘‘“folded,” so case distinctions are eliminated. The -d option (dic-
tionary order) ignores all characters except letters, digits and blanks in com-
parisons.

Although alphabetic comparisons are most common, sometimes a numeric
comparison is needed. The -n option sorts by numeric value, and the -r
option reverses the sense of any comparison. So,

$ 1s | sort -f Sort filenames in alphabetic order
$ 1s -s | sort -n Sort with smallest files first
$ 1s -s | sort -nr Sort with largest files first

sort normally sorts on the entire line, but it can be told to direct its atten-
tion only to specific fields. The notation +m means that the comparison skips
the first m fields; +0 is the beginning of the line. So, for example,

$ 1s -1 |/ sort +3nr Sort by byte count, largest first
$ who | sort +4n Sort by time of login, oldest first

Other useful sort options include -o, which specifies a filename for the
output (it can be one of the input files), and -u, which suppresses all but one
of each group of lines that are identical in the sort fields.

Multiple sort keys can be used, as illustrated by this cryptic example from
the manual page sort(1):

$ sort +0f +0 -u filenames

+0f sorts the line, folding upper and lower case together, but lines that are
identical may not be adjacent. So +0 is a secondary key that sorts the equal
lines from the first sort into normal ASCII order. Finally, -u discards any
adjacent duplicates. Therefore, given a list of words, one per line, the com-
mand prints the unique words. The index for this book was prepared with a
similar sort command, using even more of sort’s capabilities. See sort(1).

The command uniq is the inspiration for the -u flag of sort: it discards
all but one of each group of adjacent duplicate lines. Having a separate pro-
gram for this function allows it to do tasks unrelated to sorting. For example,
uniq will remove multiple blank lines whether its input is sorted or not.
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Options invoke special ways to process the duplications: uniq -d prints only
those lines that are duplicated; uniq -u prints only those that are unique (i.e.,
not duplicated); and uniq -c counts the number of occurrences of each line.
We’ll see an example shortly.

The comm command is a file comparison program. Given two sorted input
files £1 and £2, comm prints three columns of output: lines that occur only in
£1, lines that occur only in £2, and lines that occur in both files. Any of these
columns can be suppressed by an option:

$ comm -12 f£1 £2

prints only those lines that are in both files, and

$ comm -23 £1 £2

prints the lines that are in the first file but not in the second. This is useful for
comparing directories and for comparing a word list with a dictionary.

The tr command transliterates the characters in its input. By far the most
common use of tr is case conversion:

$ tr a-z A-Z Map lower case to upper
$ tr A-Z a-z Map upper case to lower

The dd command is rather different from all of the other commands we
have looked at. It is intended primarily for processing tape data from other
systems — its very name is a reminder of 0S/360 job control language. dd will
do case conversion (with a syntax very different from tr); it will convert from
ASCII to EBCDIC and vice versa; and it will read or write data in the fixed size
records with blank padding that characterize non-UNIX systems. In practice,
dd is often used to deal with raw, unformatted data, whatever the source; it
encapsulates a set of facilities for dealing with binary data.

To illustrate what can be accomplished by combining filters, consider the
following pipeline, which prints the 10 most frequent words in its input:

cat $x |

tr -sc A-Za-z ‘\012’" | Compress runs of non-letters into newline
sort |
uniq -c
sort -n
tail |
5

cat collects the files, since tr only reads its standard input. The tr com-
mand is from the manual: it compresses adjacent non-letters into newlines, thus
converting the input into one word per line. The words are then sorted and
uniq -c compresses each group of identical words into one line prefixed by a
count, which becomes the sort field for sort -n. (This combination of two
sorts around a uniq occurs often enough to be called an idiom.) The result
is the unique words in the document, sorted in increasing frequency. tail
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selects the 10 most common words (the end of the sorted list) and 5 prints
them in five columns.
By the way, notice that ending a line with | is a valid way to continue it.

Exercise 4-3. Use the tools in this section to write a simple spelling checker, using
/usr/dict/words. What are its shortcomings, and how would you address them? O
Exercise 4-4. Write a word-counting program in your favorite programming language
and compare its size, speed and maintainability with the word-counting pipeline. How
easily can you convert it into a spelling checker? O

4.3 The stream editor sed

Let us now turn to sed. Since it is derived directly from ed, it should be
easy to learn, and it will consolidate your knowledge of ed.
The basic idea of sed is simple:

$ sed ’list of ed commands’ filenames ...

reads lines one at a time from the input files; it applies the commands from the
list, in order, to each line and writes its edited form on the standard output.
So, for instance, you can change UNIX to UNIX(TM) everywhere it occurs in a
set of files with

$ sed ’'s/UNIX/UNIX(TM)/g’ filenames ... >output

Do not misinterpret what happens here. sed does not alter the contents of
its input files. It writes on the standard output, so the original files are not
changed. By now you have enough shell experience to realize that

$ sed ...’ file >file

is a bad idea: to replace the contents of files, you must use a temporary file, or
another program. (We will talk later about a program to encapsulate the idea
of overwriting an existing file; look at overwrite in Chapter 5.)

sed outputs each line automatically, so no p was needed after the substitu-
tion command above; indeed, if there had been one, each modified line would
have been printed twice. Quotes are almost always necessary, however, since
so many sed metacharacters mean something to the shell as well. For exam-
ple, consider using du -a to generate a list of filenames. Normally, du prints
the size and the filename:

$ du -a ch4.=*
18 ch4 .1
13 ch4.2
14 ch4.3
17 ch4.4
2 ch4.9
$

You can use sed to discard the size part, but the editing command needs
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quotes to protect a * and a tab from being interpreted by the shell:

$ du -a chd4.» | sed ’s/.%*+//"’
ch4.
ch4.
ch4.
ch4.
ch4.
$

O b W -

The substitution deletes all characters (.*) up to and including the rightmost
tab (shown in the pattern as ).

In a similar way, you could select the user names and login times {rom the
output of who:

$ who

1r tty1 Sep 29 07:14
ron tty3 Sep 29 10:31
you tty4 Sep 29 08:36
td tty5 Sep 29 08:47
$ who | sed ’s/ .x / /’

1lr 07:14

ron 10:31

you 08:36

td 08:47

$

The s command replaces a blank and everything that follows it (as much as
possible, including more blanks) up to another blank by a single blank. Again,
quotes are needed.

Almost the same sed command can be used to make a program getname
that will return your user name:

$ cat getname

who am i | sed ’s/ .x//’
$ getname

you

$

Another sed sequence is used so frequently that we have made it into a
shell file called ind. The ind command indents its input one tab stop; it is
handy for moving something over to fit better onto line-printer paper.

The implementation of ind is easy — stick a tab at the front of each line:

sed ‘s/"/-+/' $% Version 1 of ind

This version even puts a tab on each empty line, which seems unnecessary. A
better version uses sed’s ability to select the lines to be modified. If you pre-
fix a pattern to the command, only the lines that match the pattern will be
affected:
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sed */./s/"/+/" $= Version 2 of ind

The pattern /./ matches any line that has at least one character on it other
than a newline; the s command is done for those lines but not for empty lines.
Remember that sed outputs all lines regardless of whether they were changed,
so the empty lines are still produced as they should be.

There’s yet another way that ind could be written. It is possible to do the
commands only on lines that don’t match the selection pattern, by preceding
the command with an exclamation mark ‘I’. In

sed '/"$/1s/"/4/" $x Version 3 of ind

the pattern /" $/ matches empty lines (the end of the line immediately follows
the beginning), so /"~ $/! says, “don’t do the command on empty lines.”

As we said above, sed prints each line automatically, regardless of what
was done to it (unless it was deleted). Furthermore, most ed commands can
be used. So it’s easy to write a sed program that will print the first three
(say) lines of its input, then quit:

sed 3qg

Although 3q is not a legal ed command, it makes sense in sed: copy lines,
then quit after the third one.

You might want to do other processing to the data, such as indent it. One
way is to run the output from sed through ind, but since sed accepts multi-
ple commands, it can be done with a single (somewhat unlikely) invocation of
sed:

sed ‘s/"/+/
3q’
Notice where the quotes and the newline are: the commands have to be on
separate lines, but sed ignores leading blanks and tabs.

With these ideas, it might seem sensible to write a program, called head,
to print the first few lines of each filename argument. But sed 3q (or 10q) is
so easy to type that we’ve never felt the need. We do, however, have an ind,
since its equivalent sed command is harder to type. (In the process of writing
this book we replaced the existing 30-line C program by version 2 of the one-
line implementations shown earlier). There is no clear criterion for when it’s
worth making a separate command from a complicated command line; the best
rule we’ve found is to put it in your bin and see if you actually use it.

It’s also possible to put sed commands in a file and execute them from
there, with

$ sed -f cmdfile ...

You can use line selectors other than numbers like 3:
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$ sed ’/pattern/q’

prints its input up to and including the first line matching pattern, and

$ sed ’/pattern/d’

deletes every line that contains pattern; the deletion happens before the line is
automatically printed, so deleted lines are discarded.

Although automatic printing is usually convenient, sometimes it gets in the
way. It can be turned off by the -n option; in that case, only lines explicitly
printed with a p command appear in the output. For example,

$ sed -n ’/pattern/p’

does what grep does. Since the matching condition can be inverted by follow-
ing it with !,

$ sed -n ‘/pattern/!p’

is grep -v. (So is sed ’/pattern/d’.)

Why do we have both sed and grep? After all, grep is just a simple spe-
cial case of sed. Part of the reason is history — grep came well before sed.
But grep survives, and indeed thrives, because for the particular job that they
both do, it is significantly easier to use than sed is: it does the common case
about as succinctly as possible. (It also does a few things that sed won’t; look
at the -b option, for instance.) Programs do die, however. There was once a
program called gres that did simple substitution, but it expired almost
immediately when sed was born.

Newlines can be inserted with sed, using the same syntax as in ed:

$ sed ’“s/$/\
> /7

adds a newline to the end of each line, thus double-spacing its input, and

$ sed ’s/[ ][ -»]*/\
> /g’

replaces each string of blanks or tabs with a newline and thus splits its input
into one word per line. (The regular expression ‘[ -+1’ matches a blank or
tab; ‘[ -]+’ matches zero or more of these, so the whole pattern matches one
or more blanks and/or tabs.)

You can also use pairs of regular expressions or line numbers to select a
range of lines over which any one of the commands will operate.
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$ sed -n “20,30p”’ Print only lines 20 through 30
$ sed “1,104° Delete lines 1 through 10 (= tail +11)
$ sed “1,/°$/d’ Delete up to and including first blank line
$ sed -n '/"$/,/"end/p’ Print each group of lines from

an empty line to line starting with end
$ sed ‘$d’ Delete last line

Line numbers go from the beginning of the input; they do not reset at the
beginning of a new file.

There is a fundamental limitation of sed that is not shared by ed, however:
relative line numbers are not supported. In particular, + and - are not under-
stood in line number expressions, so it is impossible to reach backwards in the
input:

$ sed ’$-1d’ lllegal: can’t refer backward

Unrecognized command: $-1d
$

Once a line is read, the previous line is gone forever: there is no way to iden-
tify the next-to-last line, which is what this command requires. (In fairness,
there is a way to handle this with sed, but it is pretty advanced. Look up the
“hold”” command in the manual.) There is also no way to do relative address-
ing forward:

$ sed ‘/thing/+1d’ Illegal: can’t refer forward

sed provides the ability to write on multiple output files. For example,

$ sed -n ‘/pat/w file1l
> /pat/!w file2’ filenames ...
$

writes lines matching pat on £ile1 and lines not matching pat on £ile2. Or,
to revisit our first example,

$ sed “s/UNIX/UNIX(TM)/gw u.out’ filenames ... >output

writes the entire output to file output as before, but also writes just the
changed lines to file u.out.

Sometimes it’s necessary to cooperate with the shell to get shell file argu-
ments into the middle of a sed command. One example is the program
newer, which lists all files in a directory that are newer than a specified one.

$ cat newer

# newer £f: 1list files newer than f
1s -t | sed */"’$1'$/q’

$

The quotes protect the various special characters aimed at sed, while leaving
the $1 exposed so the shell will replace it by the filename. An alternate way
to write the argument is
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Table 4.2: Summary of sed Commands

a\ append lines to output until one not ending in \

b label branch to command : label

c\ change lines to following text as in a

d delete line; read next input line

i\ insert following text before next output

1 list line, making all non-printing characters visible
P print line

q quit

r file read file, copy contents to output

s/old/new/f  substitute new for old. If f=g, replace all occurrences;
f=p, print; f=w file, write to file

t label test: branch to label if substitution made to current line

w file write line to file

y/strl/str2/  replace each character from strl with corresponding
character from str2 (no ranges allowed)

= print current input line number

Yemd do sed cmd only if line is not selected

1 label set label for b and t commands

{ treat commands up to matching } as a group
"/"$1N\$/q"

since the $1 will be replaced by the argument while the \$ becomes just $.
In the same way, we can write older, which lists all the files older than
the named one:

$ cat older

# older f: 1list files older than f
1s -tr | sed "/~’'$1'$/q’

$

The only difference is the —r option on 1s, to reverse the order.

Although sed will do much more than we have illustrated, including testing
conditions, looping and branching, remembering previous lines, and of course
many of the ed commands described in Appendix 1, most of the use of sed is
similar to what we have shown here — one or two simple editing commands —
rather than long or complicated sequences. Table 4.2 summarizes some of
sed’s capabilities, although it omits the multi-line functions.

sed is convenient because it will handle arbitrarily long inputs, because it is
fast, and because it is so similar to ed with its regular expressions and line-at-
a-time processing. On the other side of the coin, however, sed provides a
relatively limited form of memory (it’s hard to remember text from one line to
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another), it only makes one pass over the data, it’s not possible to go back-
wards, there’s no way to do forward references like /.../+1, and it provides
no facilities for manipulating numbers — it is purely a text editor.

Exercise 4-5. Modify older and newer so they don’t include the argument file in
their output. Change them so the files are listed in the opposite order. O

Exercise 4-6. Use sed to make bundle robust. Hint: in here documents, the end-
marking word is recognized only when it matches the line exactly. O

4.4 The awk pattern scanning and processing language

Some of the limitations of sed are remedied by awk. The idea in awk is
much the same as in sed, but the details are based more on the C program-
ming language than on a text editor. Usage is just like sed:

$ awk ‘program’ filenames ...
but the program is different:

pattern { action }
pattern { action }

awk reads the input in the filenames one line at a time. Each line is compared
with each pattern in order; for each pattern that matches the line, the
corresponding action is performed. Like sed, awk does not alter its input
files.

The patterns can be regular expressions exactly as in egrep, or they can be
more complicated conditions reminiscent of C. As a simple example, though,

$ awk ’/regular expression/ { print }’ filenames ...

does what egrep does: it prints every line that matches the regular expression.
Either the pattern or the action is optional. If the action is omitted, the
default action is to print matched lines, so

$ awk ’/regular expression/’ filenames ...

does the same job as the previous example. Conversely, if the pattern is omit-
ted, then the action part is done for every input line. So

$ awk “{ print }’ filenames ...

does what cat does, albeit more slowly.
One final note before we get on to interesting examples. As with sed, it is
possible to present the program to awk from a file:

$ awk -f cmdfile filenames ...
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Fields

awk splits each input line automatically into fields, that is, strings of non-
blank characters separated by blanks or tabs. By this definition, the output of
who has five fields:

$ who
you tty2 Sep 29 11:53
jim tty4 Sep 29 11:27
$
awk calls the fields $1, $2, ..., $NF, where NF is a variable whose value is set

to the number of fields. In this case, NF is 5 for both lines. (Note the differ-
ence between NF, the number of fields, and $NF, the last field on the line. In
awk, unlike the shell, only fields begin with a $; variables are unadorned.)
For example, to discard the file sizes produced by du -a,

$ du -a / awk ‘{ print $2 }’

and to print the names of the people logged in and the time of login, one per
line:

$ who / awk ’{ print $1, $5 }’

you 11:53

jim 11:27

$

To print the name and time of login sorted by time:

$ who | awk ’{ print $5, $1 }’ | sort
11:27 jim

11:53 you

$

These are alternatives to the sed versions shown earlier in this chapter.
Although awk is easier to use than sed for operations like these, it is usually
slower, both getting started and in execution when there’s a lot of input.

awk normally assumes that white space (any number of blanks and tabs)
separates fields, but the separator can be changed to any single character. One
way is with the -F (upper case) command-line option. For example, the fields
in the password file /etc/passwd are separated by colons:

$ sed 3q /etc/passwd
root:3D.fHR5KoB.3s:0:1:S.User:/:
ken:y.68wd1.ijayz:6:1:K.Thompson: /usr/ken:
dmr:z4u3dJWbg7wCk:7:1:D.M.Ritchie:/usr/dmr:
$

To print the user names, which come from the first field,
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$ sed 3q /etc/passwd | awk -F: ’{ print $1 }’
root

ken

dmr

$

The handling of blanks and tabs is intentionally special. By default, both
blanks and tabs are separators, and leading separators are discarded. If the
separator is set to anything other than blank, however, then leading separators
are counted in determining the fields. In particular, if the separator is a tab,
then blanks are not separator characters, leading blanks are part of the field,
and each tab defines a field.

Printing

awk keeps track of other interesting quantities besides the number of input
fields. The built-in variable NR is the number of the current input “record” or
line. So to add line numbers to an input stream, use this:

$ awk ’‘{ print NR, $0 }’

The field $0 is the entire input line, unchanged. In a print statement items
separated by commas are printed separated by the output field separator, which
is by default a blank.

The formatting that print does is often acceptable, but if it isn’t, you can
use a statement called printf for complete control of your output. For exam-
ple, to print line numbers in a field four digits wide, you might use the follow-
ing:

$ awk ’{ printf "%4d %s\n", NR, $0 }’

%4d specifies a decimal integer (NR) in a field four digits wide, %s a string of
characters ($0), and \n a newline character, since printf doesn’t print any
spaces or newlines automatically. The printf statement in awk is like the C
function; see print£(3).

We could have written the first version of ind (from early in this chapter)
as

awk ‘{ printf "\t%s\n", $0 }’ $=x
which prints a tab (\t) and the input record.
Patterns
Suppose you want to look in /etc/passwd for people who have no pass-

words. The encrypted password is the second field, so the program is just a
pattern:

$ awk -F: “$2 == ""’ /etc/passwd

The pattern asks if the second field is an empty string (‘==" is the equality test
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operator). You can write this pattern in a variety of ways:

$2 == "" 2nd field is empty

$2 ~ /°$/ 2nd field matches empty siring

$2 1~ /./ 2nd field doesn’t maich any character
length($2) == 0 Length of 2nd field is zero

The symbol ~ indicates a regular expression match, and !~ means ‘“‘does not
match.” The regular expression itself is enclosed in slashes.

length is an awk built-in function that produces the length of a string of
characters. A pattern can be preceded by ! to negate it, as in

!(\§2 = "W )

The ‘!’ operator is like that in C, but opposite to sed, where the ! follows the
pattern.

One common use of patterns in awk is for simple data validation tasks.
Many of these amount to little more than looking for lines that fail to meet
some criterion; if there is no output, the data is acceptable (‘‘no news is good
news’’). For example, the following pattern makes sure that every input
record has an even number of fields, using the operator % to compute the
remainder:

NF % 2 1= 0 # print if odd number of fields
Another prints excessively long lines, using the built-in function length:

length($0) > 72 # print if too long

awk uses the same comment convention as the shell does: a # marks the begin-
ning of a comment.

You can make the output somewhat more informative by printing a warning
and part of the too-long line, using another built-in function, substr:

length($0) > 72 { print "Line", NR, "too long:", substr($0,1,60)

substr(s,m,n) produces the substring of s that begins at position m and is n
characters long. (The string begins at position 1.) If n is omitted, the sub-
string from m to the end is used. substr can also be used for extracting
fixed-position fields, for instance, selecting the hour and minute from the out-
put of date:

$ date

Thu Sep 29 12:17:01 EDT 1983

$ date !/ awk ’{ print substr($4, 1, 5) }’
12:17

$

Exercise 4-7. How many awk programs can you write that copy input to output as cat
does? Which is the shortest? O
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The BEGIN and END pafterns

awk provides two special patterns, BEGIN and END. BEGIN actions are
performed before the first input line has been read; you can use the BEGIN
pattern to initialize variables, to print headings or to set the field separator by
assigning to the variable Fs:

$ awk ‘BEGIN { FS = ":" }
> $2 == "" ’ Jetc/passwd
$ No output: we all use passwords

END actions are done after the last line of input has been processed:
$ awk “END { print NR }’ ...

prints the number of lines of input.

Arithmetic and variables

The examples so far have involved only simple text manipulation. awk’s
real strength lies in its ability to do calculations on the input data as well; it is
easy to count things, compute sums and averages, and the like. A common use
of awk is to sum columns of numbers. For example, to add up all the numbers
in the first column:

{ s =85+ $11}
END { print s }

Since the number of values is available in the variable NR, changing the last
line to

END { print s, s/NR }

prints both sum and average.

This example also illustrates the use of variables in awk. s is not a built-in
variable, but one defined by being used. Variables are initialized to zero by
default so you usually don’t have to worry about initialization.

awk also provides the same shorthand arithmetic operators that C does, so
the example would normally be written

{ s += $1 }
END { print s }

s += $1isthesameass = s + $1, but notationally more compact.
You can generalize the example that counts input lines like this:

{ nc += length($0) + 1 # number of chars, 1 for \n
nw += NF # number of words

}
END { print NR, nw, nc }

This counts the lines, words and characters in its input, so it does the same job
as we (although it doesn’t break the totals down by file).
As another example of arithmetic, this program computes the number of
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66-line pages that will be produced by running a set of files through pr. This
can be wrapped up in a command called prpages:

$ cat prpages
# prpages: compute number of pages that pr will print

we $x% |

awk ‘!/ total$/ { n += int(($1+55) / 56) }
END { print n }’

$

pr puts 56 lines of text on each page (a fact determined empirically). The
number of pages is rounded up, then truncated to an integer with the built-in
function int, for each line of wc output that does not match total at the end
of a line.

$ wc chd.»
753 3090 18129 ch4.1
612 2421 13242 ch4.2
637 2462 13455 ch4.3
802 2986 16904 ch4.4
50 213 1117 ch4.9
2854 11172 62847 total
$ prpages ch4.x
53
$

To verify this result, run pr into awk directly:

$ pr ch4.» | awk ’‘END { print NR/66 }’
53
$

Variables in awk also store strings of characters. Whether a variable is to
be treated as a number or as a string of characters depends on the context.
Roughly speaking, in an arithmetic expression like s+=$1, the numeric value
is used; in a string context like x="abc", the string value is used; and in an
ambiguous case like x>y, the string value is used unless the operands are
clearly numeric. (The rules are stated precisely in the awk manual.) String
variables are initialized to the empty string. Coming sections will put strings to
good use.

awk itself maintains a number of built-in variables of both types, such as
NR and FS. Table 4.3 gives the complete list. Table 4.4 lists the operators.

Exercise 4-8. Our test of prpages suggests alternate implementations. Experiment to
see which is fastest. O

Control flow

It is remarkably easy (speaking from experience) to create adjacent dupli-
cate words accidentally when editing a big document, and it is obvious that
that almost never happens intentionally. To prevent such problems, one of the
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Table 4.3: awk Built-in Variables
FILENAME name of current input file
FS field separator character (default blank & tab)
NF number of fields in input record
NR number of input record
OFMT output format for numbers (default %g; see print£(3))
OFS output field separator string (default blank)
ORS output record separator string (default newline)
RS input record separator character (default newline)

Table 4.4: awk Operators (increasing order of precedence)

= 4= -= #*= /= %= assignment; v op= exprisv = v op (expr)
HH OR: exprl i1 expr2 true if either is;
expr2 not evaluated if expr! is true
&& AND: exprl && expr2 true if both are;
expr2 not evaluated if exprl is false
! negate value of expression
> >= < <= == l= ~ |~ relational operators;

~ and !~ are match and non-match
nothing string concatenation
+ - plus, minus
* / % multiply, divide, remainder
+4 —- increment, decrement (prefix or postfix)

the components of the Writer’s Workbench family of programs, called
double, looks for pairs of identical adjacent words. Here is an implementa-
tion of double in awk:
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$ cat double

awk
FILENAME != prevfile { # new file
NR = 1 # reset line number
prevfile = FILENAME
}
NF > 0 {
if ($1 == lastword)
printf "double %s, file %s, line %d\n",$1,FILENAME,NR
for (i = 2; i <= NF; i++)
if ($1i == $(i-1))
printf "double %s, file %s, line %d\n",$i,FILENAME,NR
if (NF > 0)
lastword = $NF
1 ¢
$

The operator ++ increments its operand, and the operator -- decrements.

The built-in variable FILENAME contains the name of the current input file.
Since NR counts lines from the beginning of the input, we reset it every time
the filename changes so an offending line is properly identified.

The if statement is just like that in C:

if (condition)
statementl
else
statement2

If condition is true, then statementl is executed; if it is false, and if there is an
else part, then statement2 is executed. The else part is optional.
The for statement is a loop like the one in C, but different from the
shell’s:
for (expressionl; condition; expression2)
statement

The for is identical to the following while statement, which is also valid in
awk:

expressionl

while (condition) {
statement
expression2

}
For example,
for (i = 2; i <= NF; i++)

runs the loop with i set in turn to 2, 3, ..., up to the number of fields, NF.
The break statement causes an immediate exit from the enclosing while
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or for; the continue statement causes the next iteration to begin (at condi-
tion in the while and expression2 in the for). The next statement causes
the next input line to be read and pattern matching to resume at the beginning
of the awk program. The exit statement causes an immediate transfer to the
END pattern.

Arrays

awk provides arrays, as do most programming languages. As a trivial
example, this awk program collects each line of input in a separate array ele-
ment, indexed by line number, then prints them out in reverse order:

$ cat backwards

# backwards: print input in backward line order

awk * { line[NR] = $0 }

END { for (i = NR; 1 > 0; i--) print line[i] } * $=
$

Notice that, like variables, arrays don’t have to be declared; the size of an
array is limited only by the memory available on your machine. Of course if a
very large file is being read into an array, it may eventually run out of
memory. To print the end of a large file in reverse order requires cooperation
with tail:

$ tail -5 /usr/dict/web2 | backwards
zymurgy

zymotically

zymotic

zymosthenic

zZymosis

$

tail takes advantage of a file system operation called seeking, to advance to
the end of a file without reading the intervening data. Look at the discussion
of 1seek in Chapter 7. (Our local version of tail has an option -r that
prints the lines in reverse order, which supersedes backwards.)

Normal input processing splits each input line into fields. It is possible to
perform the same field-splitting operation on any string with the built-in func-
tion split:

n = split(s, arr, sep)

splits the string s into fields that are stored in elements 1 through » of the
array arr. If a separator character sep is provided, it is used; otherwise the
current value of FS is used. For example, split($0,a,":") splits the input
line on colons, which is suitable for processing /etc/passwd, and
split("9/29/83" ,date,"/") splits a date on slashes.
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1

$ sed 1q /etc/passwd | awk ‘{split($0,a,":"); print a[1]}’
root

$ echo 9/29/83 | awk ’{split($0,date,"/"); print date[3]}’
83

$

Table 4.5 lists the awk built-in functions.

Table 4.5: awk Built-in Functions
cos (expr) cosine of expr
exp (expr) exponential of expr: ¢“¥"
getline() reads next input line; returns 0 if end of file, 1 if not
index(sl,s2) position of string s2 in s/; returns 0 if not present
int (expr) integer part of expr; truncates toward 0
length(s) length of string s
log (expr) natural logarithm of expr
sin(expr) sine of expr
split(s,a,c) split s into a[ 1]...aln] on character c; return n
sprintf(fmt, ...) format ... according to specification fint
substr(s,m,n) n-character substring of s beginning at position m

Associative arrays
A standard problem in data processing is to accumulate values for a set of
name-value pairs. That is, from input like

Susie 400
John 100
Mary 200
Mary 300
John 100
Susie 100
Mary 100

we want to compute the total for each name:

John 200
Mary 600
Susie 500

awk provides a neat way to do this, the associative array. Although one nor-
mally thinks of array subscripts as integers, in awk any value can be used as a
subscript. So

{ sum[$1] += $2 }
END { for (name in sum) print name, sum[name] }

is the complete program for adding up and printing the sums for the name-
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value pairs like those above, whether or not they are sorted. Each name ($1)
is used as a subscript in sum; at the end, a special form of the for statement is
used to cycle through all the elements of sum, printing them out. Syntacti-
cally, this variant of the for statement is

for (var in array)
statement

Although it might look superficially like the for loop in the shell, it’s unre-
lated. It loops over the subscripts of array, not the elements, setting var to
each subscript in turn. The subscripts are produced in an unpredictable order,
however, so it may be necessary to sort them. In the example above, the out-
put can be piped into sort to list the people with the largest values at the top.

$ awk “...” | sort +1inr

The implementation of associative memory uses a hashing scheme to ensure
that access to any element takes about the same time as to any other, and that
(at least for moderate array sizes) the time doesn’t depend on how many ele-
ments are in the array.

The associative memory is effective for tasks like counting all the words in
the input:

$ cat wordfreq

awk ’ { for (i = 1; i <= NF; i++) num[$i]++ }

END { for (word in num) print word, num[word] }

4 $*

$ wordfreq ch4.x | sort +1 -nr | sed 20q | 4

the 372 .CW 345 of 220 is 185
to 175 a 167 in 109 and 100
.P1 94 .P2 94 .PP 90 $ 87

awk 87 sed 83 that 76 for 75
The 63 are 61 line 55 print 52
$

The first for loop looks at each word in the input line, incrementing the ele-
ment of array num subscripted by the word. (Don’t confuse awk’s $i, the i’th
field of the input line, with any shell variables.) After the fileshasgbeen read,
the second for loop prints, in arbitrary order, the words and their counts.
Exercise 4-9. The output from wordfreq includes text formatting commands like .CW,
which is used to print words in this font. How would you get rid of such non-
words? How would you use tr to make wordfreq work properly regardless of the
case of its input? Compare the implementation and performance of wordfreq to the
pipeline from Section 4.2 and to this one:

sed ‘s/[ +]1[ »1*/\

/g’ $+ | sort | uniq -c ! sort -nr
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Strings

Although both sed and awk are used for tiny jobs like selecting a single
field, only awk is used to any extent for tasks that really require programming.
One example is a program that folds long lines to 80 columns. Any line that
exceeds 80 characters is broken after the 80th; a \ is appended as a warning,
and the residue is processed. The final section of a folded line is right-
justified, not left-justified, since this produces more convenient output for pro-
gram listings, which is what we most often use fold for. As an example,
using 20-character lines instead of 80,

$ cat test
A short line.
A somewhat longer line.
This line is quite a bit longer than the last one.
$ fold test
A short line.
A somewhat longer 1i\
ne.
This line is quite a\
bit longer than the\
last one.
$

Strangely enough, the 7th Edition provides no program for adding or
removing tabs, although pr in System V will do both. Our implementation of
fold uses sed to convert tabs into spaces so that awk’s character count is
right. This works properly for leading tabs (again typical of program source)
but does not preserve columns for tabs in the middle of a line.

# fold: fold long lines

sed ’‘s/+/ /g’ $= | # convert tabs to 8 spaces
awk
BEGIN {
N = 80 # folds at column 80
for (i = 1; i <= Nj; i++) # make a string of blanks
blanks = blanks " "
}
{ if ((n = length($0)) <= N)
print
else {
for (i = 13 n > Ny n -= N) {
printf "%s\\\n", substxr($0,i,N)
i += N;
}
printf "%s%s\n", substr(blanks,1,N-n), substxr($0,i)
}
} ’

In awk there is no explicit string concatenation operator; strings are
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concatenated when they are adjacent. Initially, blanks is a null string. The
loop in the BEGIN part creates a long string of blanks by concatenation: each
trip around the loop adds one more blank to the end of blanks. The second
loop processes the input line in chunks until the remaining part is short
enough. As in C, an assignment statement can be used as an expression, so
the construction

if ((n = length($0)) <= N)

assigns the length of the input line to n before testing the value. Notice the
parentheses.

Exercise 4-10. Modify £fold so that it will fold lines at blanks or tabs rather than split-
ting a word. Make it robust for long words. O

Interaction with the shell
Suppose you want to write a program f£ield n that will print the n-th field
from each line of input, so that you could say, for example,

$ who | field 1

to print only the login names. awk clearly provides the field selection capabil-
ity; the main problem is passing the field number n to an awk program. Here
is one implementation:

awk ‘{ print $°$1° }’

The $1 is exposed (it’s not inside any quotes) and thus becomes the field
number seen by awk. Another approach uses double quotes:

awk "{ print \$$1 }"

In this case, the argument is interpreted by the shell, so the \$ becomes a $
and the $1 is replaced by the value of n. We prefer the single-quote style
because so many extra \’s are needed with the double-quote style in a typical
awk program.
A second example is addup n, which adds up the numbers in the n-th field:
awk ‘{ s += $'%1" }
END { print s }’

A third example forms separate sums of each of n columns, plus a grand
total:

.
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awk ’

BEGIN { n = “$1" }

{ for (i = 1; 1 <= n; i++)
sum[i] += $i

}

END { for (i = 1; 1 <= n; i++) {
printf "%6g ", sum[i]
total += sum[i]

}
printf "; total = %6g\n", total
} o’

We use a BEGIN to insert the value of n into a variable, rather than cluttering
up the rest of the program with quotes.

The main problem with all these examples is not keeping track of whether
one is inside or outside of the quotes (though that is a bother), but that as
currently written, such programs can read only their standard input; there is no
way to pass them both the parameter n and an arbitrarily long list of
filenames. This requires some shell programming that we’ll address in the next
chapter.

A calendar service based on awk

Our final example uses associative arrays; it is also an illustration of how to
interact with the shell, and demonstrates a bit about program evolution.

The task is to have the system send you mail every morning that contains a
reminder of upcoming events. (There may already be such a calendar service;
see calendar(l). This section shows an alternate approach.) The basic ser-
vice should tell you of events happening today; the second step is to give a day
of warning — events of tomorrow as well as today. The proper handling of
weekends and holidays is left as an exercise.

The first requirement is a place to keep the calendar. For that, a file called
calendar in /usr/you seems easiest.

$ cat calendar

Sep 30 mother’s birthday
Oct 1 lunch with joe, noon
Oct 1 meeting 4pm

$

Second, you need a way to scan the calendar for a date. There are many
choices here; we will use awk because it is best at doing the arithmetic neces-
sary to get from ‘‘today” to ‘‘tomorrow,” but other programs like sed or
egrep can also serve. The lines selected from the calendar are shipped off by
mail, of course.

Third, you need a way to have calendar scanned reliably and automati-
cally every day, probably early in the morning. This can be done with at,
which we mentioned briefly in Chapter 1.



128  THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 4

If we restrict the format of calendar so each line begins with a month
name and a day as produced by date, the first draft of the calendar program
is easy:

$ date

Thu Sep 29 15:23:12 EDT 1983

$ cat bin/calendar

# calendar: version 1 -- today only

awk <$HOME/calendar ’
BEGIN { split("’"‘date‘"’", date) }
$1 == date[2] && $2 == date[3]

| mail $NAME

$

The BEGIN block splits the date produced by date into an array; the second
and third elements of the array are the month and the day. We are assuming
that the shell variable NAME contains your login name.

The remarkable sequence of quote characters is required to capture the date
in a string in the middle of the awk program. An alternative that is easier to
understand is to pass the date in as the first line of input:

$ cat bin/calendar

# calendar: version 2 -- today only, no quotes
(date; cat $HOME/calendar) |
awk

NR == 1 { mon = $2; day = $3 } # set the date

NR > 1 && $1 == mon && $2 == day # print calendar lines
| mail $NAME

’

$

The next step is to arrange for calendar to look for tomorrow as well as
today. Most of the time all that is needed is to take today’s date and add 1 to
the day. But at the end of the month, we have to get the next month and set
the day back to 1. And of course each month has a different number of days.

This is where the associative array comes in handy. Two arrays, days and
nextmon, whose subscripts are month names, hold the number of days in the
month and the name of the next month. Then days["Jan"] is 31, and
nextmon["Jan"] is Feb. Rather than create a whole sequence of statements
like

days["Jan"]
days["Feb"]

31; nextmon["Jan"] "Feb"
28; nextmon["Feb"] = "Mar"

we will use split to convert a convenient data structure into the one really
needed:
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$ cat calendar

# calendar: version 3 -- today and tomorrow
awk <$HOME/calendar °
BEGIN {

x = "Jan 31 Feb 28 Mar 31 Apr 30 May 31 Jun 30 " \
"Jul 31 Aug 31 Sep 30 Oct 31 Nov 30 Dec 31 Jan 31"
split(x, data)
for (i = 1; i < 24; i += 2) {
days[datal[i]] = datal[i+1]
nextmon[datal[i]] = data[i+2]
+
split("’"‘date'"’", date)
mon1 = date[2]; day1 = date[3]
mon2 = monl; day2 = day1 + 1
if (day1 >= days[mon1]) {
day2 = 1
mon2 = nextmon[mon1]

}
}
$1 == mon1 && $2 == day1 ii $1 == mon2 && $2 == day2
| mail $NAME
$

Notice that Jan appears twice in the data; a “‘sentinel”” data value like this sim-
plifies processing for December.

The final stage is to arrange for the calendar program to be run every day.
What you want is for someone to wake up every morning at around 5 AM and
run calendar. You can do this yourself by remembering to say (every day!)

$ at 5am
calendar
ctl-d

$

but that’s not exactly automatic or reliable. The trick is to tell at not only to
run the calendar, but also to schedule the next run as well.

$ cat early.morning
calendar

echo early.morning | at 5am
$

The second line schedules another at command for the next day, so once
started, this sequence is self-perpetuating. The at command sets your PATH,
current directory and other parameters for the commands it processes, so you
needn’t do anything special.

Exercise 4-11. Modify calendar so it knows about weekends: on Friday, ‘‘tomorrow”

includes Saturday, Sunday and Monday. Modify calendar to handle leap years.
Should calendar know about holidays? How would you arrange it? O
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Exercise 4-12. Should calendar know about dates inside a line, not just at the begin-
ning? How about dates expressed in other formats, like 10/1/83? O

Exercise 4-13. Why doesn’t calendar use getname instead of $NAME? O
Exercise 4-14. Write a personal version of rm that moves files to a temporary directory

rather than deleting them, with an at command to clean out the directory while you are
sleeping. O

Loose ends

awk is an ungainly language, and it’s impossible to show all its capabilities
in a chapter of reasonable size. Here are some other things to look at in the
manual:

e Redirecting the output of print into files and pipes: any print or
printf statement can be followed by > and a filename (as a quoted string
or in a variable); the output will be sent to that file. As with the shell, >>
appends instead of overwriting. Printing into a pipe uses i instead of >.

e Multi-line records: if the record separator RS is set to newline, then input
records will be separated by an empty line. In this way, several input lines
can be treated as a single record.

e ‘Pattern, pattern” as a selector: as in ed and sed, a range of lines can be
specified by a pair of patterns. This matches lines from an occurrence of
the first pattern until the next occurrence of the second. A simple example
is

NR == 10, NR == 20

which matches lines 10 through 20 inclusive.

4.5 Good files and good filters

Although the last few awk examples are self-contained commands, many
uses of awk are simple one- or two-line programs to do some filtering as part
of a larger pipeline. This is true of most filters — sometimes the problem at
hand can be solved by the application of a single filter, but more commonly it
breaks down into subproblems solvable by filters joined together into a pipe-
line. This use of tools is often cited as the heart of the UNIX programming
environment. That view is overly restrictive; nevertheless, the use of filters
pervades the system, and it is worth observing why it works.

The output produced by UNIX programs is in a format understood as input
by other programs. Filterable files contain lines of text, free of décorative
headers, trailers or blank lines. Each line is an object of interest — a
filename, a word, a description of a running process — so programs like wc
and grep can count interesting items or search for them by name. When
more information is present for each object, the file is still line-by-line, but
columnated into fields separated by blanks or tabs, as in the output of 1s -1.
Given data divided into such fields, programs like awk can easily select, pro-
cess or rearrange the information.



CHAPTER 4 FILTERS 131

Filters share a common design. Each writes on its standard output the
result of processing the argument files, or the standard input if no arguments
are given. The arguments specify input, never output,f so the output of a
command can always be fed to a pipeline. Optional arguments (or non-
filename arguments such as the grep pattern) precede any filenames. Finally,
error messages are written on the standard error, so they will not vanish down
a pipe.

These conventions have little effect on the individual commands, but when
uniformly applied to all programs result in a simplicity of interconnection,
illustrated by many examples throughout this book, but perhaps most spectacu-
larly by the word-counting example at the end of Section 4.2. If any of the
programs demanded a named input or output file, required interaction to
specify parameters, or generated headers and trailers, the pipeline wouldn’t
work. And of course, if the UNIX system didn’t provide pipes, someone would
have to write a conventional program to do the job. But there are pipes, and
the pipeline works, and is even easy to write if you are familiar with the tools.

Exercise 4-15. ps prints an explanatory header, and 1s -1 announces the total number
of blocks in the files. Comment.

History and bibliographic notes

A good review of pattern matching algorithms can be found in the paper
“Pattern matching in strings” (Proceedings of the Symposium on Formal
Language Theory, Santa Barbara, 1979) by Al Aho, author of egrep.

sed was designed and implemented by Lee McMahon, using ed as a base.

awk was designed and implemented by Al Aho, Peter Weinberger and
Brian Kernighan, by a much less elegant process. Naming a language after its
authors also shows a certain poverty of imagination. A paper by the imple-
mentors, “AWK — a pattern scanning and processing language,” Software—
Practice and Experience, July 1978, discusses the design. awk has its origins in
several areas, but has certainly stolen good ideas from SNOBOL4, from sed,
from a validation language designed by Marc Rochkind, from the language
tools yacc and lex, and of course from C. Indeed, the similarity between
awk and C is a source of problems — the language looks like C but it’s not.
Some constructions are missing; others differ in subtle ways.

An article by Doug Comer entitled “The flat file system FFG: a database
system consisting of primitives” (Software—Practice and Experience,
November, 1982) discusses the use of the shell and awk to create a database
system.

T An early uNix file system was destroyed by a maintenance program that violated this rule, be-
cause a harmless-looking command scribbled all over the disc.






CHAPTER 5: SHELL PROGRAMMING

Although most users think of the shell as an interactive command inter-
preter, it is really a programming language in which each statement runs a
command. Because it must satisfy both the interactive and programming
aspects of command execution, it is a strange language, shaped as much by his-
tory as by design. The range of its application leads to an unsettling quantity
of detail in the language, but you don’t need to understand every nuance to use
it effectively. This chapter explains the basics of shell programming by show-
ing the evolution of some useful shell programs. It is not a manual for the
shell. That is in the manual page sh(l) of the Unix Programmer’s Manual,
which you should have handy while you are reading.

With the shell, as with most commands, the details of behavior can often be
most quickly discovered by experimentation. The manual can be cryptic, and
there is nothing better than a good example to clear things up. For that rea-
son, this chapter is organized around examples rather than shell features; it is a
guide to using the shell for programming, rather than an encyclopedia of its
capabilities. We will talk not only about what the shell can do, but also about
developing and writing shell programs, with an emphasis on testing ideas
interactively.

When you’ve written a program, in the shell or any other language, it may
be helpful enough that other people on your system would like to use it. But
the standards other people expect of a program are usually more rigorous than
those you apply for yourself. A major theme in shell programming is therefore
making programs robust so they can handle improper input and give helpful
information when things go wrong.

5.1 Customizing the cal command

One common use of a shell program is to enhance or to modify the user
interface to a program. As an example of a program that could stand enhance-
ment, consider the cal(l) command:

133
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$ cal

usage: cal [month] year Good so far
$ cal october 1983

Bad argument Not so good

$ cal 10 1983
October 1983
S MTu WTh F S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
$

It’s a nuisance that the month has to be provided numerically. And, as it turns
out, cal 10 prints out the calendar for the entire year 10, rather than for the
current October, so you must always specify the year to get a calendar for a
single month.

The important point here is that no matter what interface the cal command
provides, you can change it without changing cal itself. You can place a com-
mand in your private bin directory that converts a more convenient argument
syntax into whatever the real cal requires. You can even call your version
cal, which means one less thing for you to remember.

The first issue is design: what should cal do? Basically, we want cal to
be reasonable. It should recognize a month by name. With two arguments, it
should behave just as the old cal does, except for converting month names
into numbers. Given one argument, it should print the month or year’s calen-
dar as appropriate, and given zero arguments, it should print the current
month’s calendar, since that is certainly the most common use of a cal com-
mand. So the problem is to decide how many arguments there are, then map
them to what the standard cal wants.

The shell provides a case statement that is well suited for making such
decisions:

case word in

pattern)  commands ;;
pattern)  commands ; ;

esac
The case statement compares word to the patterns from top to bottom, and
performs the commands associated with the first, and only the first, pattern
that matches. The patterns are written using the shell’s pattern matching rules,
slightly generalized from what is available for filename matching. Each action

is terminated by the double semicolon ;;. (The ;; may be left off the last
case but we often leave it in for easy editing.)
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Our version of cal decides how many arguments are present, processes
alphabetic month names, then calls the real cal. The shell variable $# holds
the number of arguments that a shell file was called with; other special shell
variables are listed in Table 5.1.

$ cat cal
# cal: nicer interface to /usr/bin/cal

case $# in

0) set ‘date‘; m=$2; y=$6 ;; # no args: use today

1) m=$1; set ‘date‘'; y=$6 ;; # 1 arg: use this year
*) m=$1; y=$2 ;; # 2 args: month and year
esac

case $m in

jan+|Jan«) m=1 3,

feb« | Febx) m=2 ;;

mar*iMarx) m=3 ;;

apr+iApr+) m=4 ;;

may#* | May*) m=5 ;;

jun# i Jun*) m=6 ;;

jul#iJuls) m=7 ;;

aug#* i Aug#) m=8 ;;

sep#*1Sep*) m=9 ;;

oct*i0ct*) m=10 ;:

nov i Nov) m=11 33

decxiDec#) m=12 ;3

[1-91110111112) ;3 # numeric month
*) y=%m; m="" ;; # plain year
esac

/usr/bin/cal $m $y # run the real omne
$

The first case checks the number of arguments, $#, and chooses the appropri-
ate action. The final » pattern in the first case is a catch-all: if the number of
arguments is neither 0 nor 1, the last case will be executed. (Since patterns are
scanned in order, the catch-all must be last.) This sets m and y to the month
and year — given two arguments, our cal is going to act the same as the ori-
ginal.

The first case statement has a couple of tricky lines containing

set ‘date’

Although not obvious from appearance, it is easy to see what this statement
does by trying it:
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Table 5.1: Shell Built-in Variables

$# the number of arguments

$* all arguments to shell

$@ similar to $#; see Section 5.7

$- options supplied to the shell

$7? return value of the last command executed

$$ process-id of the shell

$! process-id of the last command started with &
$HOME  default argument for cd command

$IFS list of characters that separate words in arguments

$MAIL file that, when changed, triggers “‘you have mail”’ message
$PATH list of directories to search for commands

$PS1 prompt string, default ‘$ ’

$pPs2 prompt string for continued command line, default ‘>

)

$ date

Sat Oct 1 06:05:18 EDT 1983
$ set ‘date’

$ echo $1

Sat

$ echo $4

06:05:20

$

set is a shell built-in command that does too many things. With no argu-
ments, it shows the values of variables in the environment, as we saw in
Chapter 3. Ordinary arguments reset the values of $1, $2, and so on. So
set ‘date" sets $1 to the day of the week, $2 to the name of the month,
and so on. The first case in cal, therefore, sets the month and year from
the current date if there are no arguments; if there’s one argument, it’s used as
the month and the year is taken from the current date.

set also recognizes several options, of which the most often used are -v
and -x; they turn on echoing of commands as they are being processed by the
shell. These are indispensable for debugging complicated shell programs.

The remaining problem is to convert the month, if it is in textual form, into
a number. This is done by the second case statement, which should be
largely self-explanatory. The only twist is that the | character in case state-
ment patterns, as in egrep, indicates an alternative: bigismall matches
either big or small. Of course, these cases could also be written as
[jJlan* and so on. The program accepts month names either in all lower
case, because most commands accept lower case input, or with first letter capi-
talized, because that is the format printed by date. The rules for shell pattern
matching are given in Table 5.2.
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Table 5.2: Shell Pattern Matching Rules

* match any string, including the null string
? match any single character
[cecl match any of the characters in ccc.
[a-d0-3] is equivalent to [abcd0123]
" match ... exactly; quotes protect special characters. Also ’...”"

\¢ match c literally
aib in case expressions only, matches either a or b
/ in filenames, matched only by an explicit / in the expression;

in case, matched like any other character
as the first character of a filename, is matched only by an
explicit . in the expression

The last two cases in the second case statement deal with a single argu-
ment that could be a year; recall that the first case statement assumed it was
a month. If it is a number that could be a month, it is left alone. Otherwise,
it is assumed to be a year.

Finally, the last line calls /usr/bin/cal (the real cal) with the con-
verted arguments. Our version of cal works as a newcomer might expect:

$ date
Sat Oct 1 06:09:55 EDT 1983
$ cal
October 1983
S MTu WTh F S
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
$ cal dec
December 1983
S MTu WTh F S
17 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

$

And cal 1984 prints out the calendar for all of 1984.
Our enhanced cal program does the same job as the original, but in a
simpler, easier-to-remember way. We therefore chose to call it cal, rather
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than calendar (which is already a command) or something less mnemonic
like ncal. Leaving the name alone also has the advantage that users don’t
have to develop a new set of reflexes for printing a calendar.

Before we leave the case statement, it’s worth a brief comment on why the
shell’s pattern matching rules are different from those in ed and its deriva-
tives. After all, two kinds of patterns means two sets of rules to learn and two
pieces of code to process them. Some of the differences are simply bad choices
that were never fixed — for example, there is no reason except compatibility
with a past now lost that ed uses ‘.’ and the shell uses ‘?’ for “match any
character.” But sometimes the patterns do different jobs. Regular expressions
in the editor search for a string that can occur anywhere in a line; the special
characters ~ and $ are needed to anchor the search to the beginning and end
of the line. For filenames, however, we want the search anchored by default,
since that is the most common case; having to write something like

$ 1Is "?x.c$ Doesn’t work this way

instead of
$ 1s *.c

would be a great nuisance.

Exercise 5-1. If users prefer your version of cal, how do you make it globally accessi-
ble? What has to be done to put it in /usr/bin? O

Exercise 5-2. Is it worth fixing cal so cal 83 prints the calendar for 1983? If so,
how would you print the calendar for year 83? O

Exercise 5-3. Modify cal to accept more than one month, as in

$ cal oct nov

or perhaps a range of months:

$ cal oct - dec

If it’s now December, and you ask for cal jan, should you get this year’s January or
next year’s? When should you have stopped adding features to cal? O

5.2 Which command is which?

There are problems with making private versions of commands such as
cal. The most obvious is that if you are working with Mary and type cal
while logged in as mary, you will get the standard cal instead of the new one,
unless of course Mary has linked the new cal into her bin directory. This
can be confusing — recall that the error messages from the original cal are
not very helpful — but is just an example of a general problem. Since the shell
searches for commands in a set of directories specified by PATH, it is always
possible to get a version of a command other than the one you expect. For
instance, if you type a command, say echo, the pathname of the file that is
actually run could be ./echo or /bin/echo or /usr/bin/echo or
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something else, depending on the components of your PATH and where the
files are. It can be very confusing if there happens to be an executable file
with the right name but the wrong behavior earlier in your search path than
you expect. Perhaps the most common is the test command, which we will
discuss later: its name is such an obvious one for a temporary version of a pro-
gram that the wrong test program gets called annoyingly often.t A command
that reports which version of a program will be executed would provide a use-
ful service.

One implementation is to loop over the directories named in PATH, search-
ing each for an executable file of the given name. In Chapter 3, we used the
for to loop over filenames and arguments. Here, we want a loop that says

for i in each component of PATH
do
if given name is in directory i
print its full pathname
done

Because we can run any command inside backquotes ‘..., the obvious solu-
tion is to run sed over $PATH, converting colons into spaces. We can test it
out with our old friend echo:

$ echo $PATH

:/usr/you/bin:/bin:/usr/bin 4 components
$ echo $PATH | sed ’s/:/ /g’
/usr/you/bin /bin /usr/bin Only 3 printed!
$ echo ‘echo $PATH | sed ’s/:/ /g’*
/usr/you/bin /bin /usr/bin Still only 3
$
There is clearly a problem. A null string in PATH is a synonym for ‘.’. Con-

verting the colons in PATH to blanks is therefore not good enough — the infor-
mation about null components will be lost. To generate the correct list of
directories, we must convert a null component of PATH into a dot. The null
component could be in the middle or at either end of the string, so it takes a
little work to catch all the cases:

$ echo $PATH | sed ’‘s/":/.:/

> s/::/00/9

> s/:8$/:./

> s/:/ /g’
/usr/you/bin /bin /usr/bin

$

We could have written this as four separate sed commands, but since sed
does the substitutions in order, one invocation can do it all.

t Later we will see how to avoid this problem in shell files, where test is usually used.
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Once we have the directory components of PATH, the test(l) command
we’ve mentioned can tell us whether a file exists in each directory. The test
command is actually one of the clumsier UNIX programs. For example, test
-r file tests if £ile exists and can be read, and test -w file tests if
file exists and can be written, but the 7th Edition provides no test -x
(although the System V and other versions do) which would otherwise be the
one for us. We’'ll settle for test -f£, which tests that the file exists and is not
a directory, in other words, is a regular file. You should look over the manual
page for test on your system, however, since there are several versions in cir-
culation.

Every command returns an exit status — a value returned to the shell to
indicate what happened. The exit status is a small integer; by convention, 0
means “‘true’” (the command ran successfully) and non-zero means “‘false’ (the
command ran unsuccessfully). Note that this is opposite to the values of true
and false in C.

Since many different values can all represent ““false,” the reason for failure
is often encoded in the “false” exit status. For example, grep returns 0 if
there was a match, 1 if there was no match, and 2 if there was an error in the
pattern or filenames. Every program returns a status, although we usually
aren’t interested in its value. test is unusual because its sole purpose is to
return an exit status. It produces no output and changes no files.

The shell stores the exit status of the last program in the variable $?:

$ cmp /usr/you/.profile /usr/you/.profile

$ No output; they’re the same
$ echo $7?
0 Zero implies ran O .K.: files identical

$ cmp /usr/you/.profile /usr/mary/.profile
/usr/you/.profile /usr/mary/.profile differ: char 6, line 3
$ echo $7?

1 Non-zero means files were different

$

A few commands, such as cmp and grep, have an option -s that causes them
to exit with an appropriate status but suppress all output.

The shell’s if statement runs commands based on the exit status of a com-
mand, as in

if command

then

commands if condition true
else

commands if condition false
fi

The location of the newlines is important: £i, then and else are recognized
only after a newline or a semicolon. The else part is optional.
The if statement always runs a command — the condition — whereas the
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case statement does pattern matching directly in the shell. In some UNIX ver-
sions, including System V, test is a shell built-in function so an if and a
test will run as fast as a case. If test isn’t built in, case statements are
more efficient than if statements, and should be used for any pattern match-
ing:

case "$1" in

hello) command

esac

will be faster than

if test "$1" = hello Slower unless test is a shell built-in
then

command
fi

That is one reason why we sometimes use case statements in the shell for
testing things that would be done with an if statement in most programming
languages. A case statement, on the other hand, can’t easily determine
whether a file has read permissions; that is better done with a test and an
if.

So now the pieces are in place for the first version of the command which,
to report which file corresponds to a command:

$ cat which
# which cmd: which cmd in PATH is executed, version 1

case $# in

0) echo ‘Usage: which command’ 1>&2; exit 2
esac
for i in ‘echo $PATH | sed ’s/":/.:/
s/::/:.:/9
s/:$/:./
s/:/ /g’*
do
if test -f $i/$1 # use test -x if you can
then
echo $i/$1
exit O # found it
fi
done
exit 1 # not found
$

Let’s test it:
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$ cx which Make it executable
$ which which

./which

$ which ed

/bin/ed

$ mv which /usr/you/bin

$ which which

/usr/you/bin/which

$

The initial case statement is just error-checking. Notice the redirection 1>&2
on the echo so the error message doesn’t vanish down a pipe. The shell
built-in command exit can be used to return an exit status. We wrote exit
2 to return an error status if the command didn’t work, exit 1 if it couldn’t
find the file, and exit 0 if it found one. If there is no explicit exit state-
ment, the exit status from a shell file is the status of the last command exe-
cuted.

What happens if you have a program called test in the current directory?
(We’re assuming that test is not a shell built-in.)

$ echo “echo hello’ >test Make a fake test
$ cx test Make it executable
$ which which Try which now
hello Fails!

./which

$

More error-checking is called for. You could run which (if there weren’t a
test in the current directory!) to find out the full pathname for test, and
specify it explicitly. But that is unsatisfactory: test may be in different direc-
tories on different systems, and which also depends on sed and echo, so we
should specify their pathnames too. There is a simpler solution: fix PATH in
the shell file, so it only looks in /bin and /usr/bin for commands. Of
course, for the which command only, you have to save the old PATH for
determining the sequence of directories to be searched.
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$ cat which
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# which cmd: which cmd in PATH is executed, final version

opath=$PATH
PATH=/bin:/usr/bin

case $# in

0) echo ‘Usage: which command’ 1>82; exit 2
esac
for i in ‘echo $opath | sed ’‘s/":/.:/
s/i/t./g
s/:$/:./
s/:/ /g’
do
if test -f $i/$1 # this is /bin/test
then # or /usr/bin/test only
echo $i/$1
exit 0 # found it
fi
done
exit 1 # not found
$
which now works even if there is a spurious test (or sed or echo) along
the search path.
$ 1s -1 test
-rwxrwxrwx 1 you 11 Oct 1 06:55 test Still there
$ which which
/usr/you/bin/which
$ which test
./test
$ rm test
$ which test
/bin/test
$
The shell provides two other operators for combining commands, i1 and

&8&, that are often more compact and convenient than the if statement. For

example, |1 can replace some if statements:

test -f filename || echo file filename does not exist

is equivalent to

if test ! -f filename The | negates the condition
then

echo file filename does not exist
fi

The operator 11, despite appearances, has nothing to do with pipes — it is a
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conditional operator meaning OR. The command to the left of |1 is executed.
If its exit status is zero (success), the command to the right of i is ignored.
If the left side returns non-zero (failure), the right side is executed and the
value of the entire expression is the exit status of the right side. In other
words, 11 is a conditional OR operator that does not execute its right-hand
command if the left one succeeds. The corresponding && conditional is AND;

it executes its right-hand command only if the left one succeeds.

Exercise 5-4. Why doesn’t which reset PATH to opath before exiting? O

Exercise 5-5. Since the shell uses esac to terminate a case, and £i to terminate an
if, why does it use done to terminate a do? O

Exercise 5-6. Add an option -a to which so it prints all files in PATH, rather than
quitting after the first. Hint: match="exit 0’. O

Exercise 5-7. Modify which so it knows about shell built-ins like exit. O

Exercise 5-8. Modify which to check for execute permissions on the files. Change it
to print an error message when a file cannot be found. O

5.3 while and until loops: watching for things

In Chapter 3, the for loop was used for a number of simple iterative pro-
grams. Usually, a for loops over a set of filenames, as in ‘for i in *.c’, or
all the arguments to a shell program, as in ‘for i in $+’. But shell loops are
more general than these idioms would suggest; consider the for loop in
which.

There are three loops: for, while and until. The for is by far the
most commonly used. It executes a set of commands — the loop body — once
for each element of a set of words. Most often these are just filenames. The
while and until use the exit status from a command to control the execution
of the commands in the body of the loop. The loop body is executed until the
condition command returns a non-zero status (for the while) or zero (for the
until). while and until are identical except for the interpretation of the
exit status of the command.

Here are the basic forms of each loop:

for i in list of words

do
loop body, $1i set to successive elements of list
done
for i (List is implicitly all arguments to shell file, i.e., $x)
do

loop body, $1i set to successive arguments
done
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while command
do

loop body executed as long as command returns true
done

until command
do

loop body executed as long as command returns false
done

The second form of the for, in which an empty list implies $+, is a convenient
shorthand for the most common usage.

The conditional command that controls a while or until can be any com-
mand. As a trivial example, here is a while loop to watch for someone (say
Mary) to log in:

while sleep 60
do

who | grep mary
done

The sleep, which pauses for 60 seconds, will always execute normally (unless
interrupted) and therefore return ‘‘success,” so the loop will check once a
minute to see if Mary has logged in.

This version has the disadvantage that if Mary is already logged in, you
must wait 60 seconds to find out. Also, if Mary stays logged in, you will be
told about her once a minute. The loop can be turned inside out and written
with an until, to provide the information once, without delay, if Mary is on
now:

until who | grep mary
do

sleep 60
done

This is a more interesting condition. If Mary is logged in, ‘who | grep mary’
prints out her entry in the who listing and returns ‘‘true,” because grep
returns a status to indicate whether it found something, and the exit status of a
pipeline is the exit status of the last element.

Finally, we can wrap up this command, give it a name and install it:
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$ cat watchfor
# watchfor: watch for someone to log in

PATH=/bin: /usr/bin

case $# in
0) echo ‘Usage: watchfor person’ 1>&2; exit 1
esac

until who | egrep "$1"
do
sleep 60
done
$ cx watchfor
$ watchfor you

you tty0 Oct 1 08:01 It works
$ mv watchfor /usr/you/bin Install it
$

We changed grep to egrep so you can type
$ watchfor ’joelmary’

to watch for more than one person.

As a more complicated example, we could watch all people logging in and
out, and report as people come and go — a sort of incremental who. The basic
structure is simple: once a minute, run who, compare its output to that from a
minute ago, and report any differences. The who output will be kept in a file,
so we will store it in the directory /tmp. To distinguish our files from those
belonging to other processes, the shell variable $$ (the process id of the shell
command), is incorporated into the filenames; this is a common convention.
Encoding the command name in the temporary files is done mostly for the sys-
tem administrator. Commands (including this version of watchwho) often
leave files lying around in /tmp, and it’s nice to know which command is
doing it.
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$ cat watchwho
# watchwho: watch who logs in and out

PATH=/bin:/usr/bin
new=/tmp/wwho1.$$
old=/tmp/wwho2.$$

>$o0ld # create an empty file
while : # loop forever
do

who >$new
diff $0ld $new
mv $new $old

sleep 60
done i awk ‘/>/ { $1 = "in: "s print }
/</ { $1 = "out: "; print }’

$

“:” is a shell built-in command that does nothing but evaluate its arguments
and return “true.” Instead, we could have used the command true, which
merely returns a true exit status. (There is also a false command.) But ‘:’
is more efficient than true because it does not execute a command from the
file system.

diff output uses < and > to distinguish data from the two files; the awk
program processes this to report the changes in an easier-to-understand format.
Notice that the entire while loop is piped into awk, rather than running a
fresh awk once a minute. sed is unsuitable for this processing, because its
output is always behind its input by one line: there is always a line of input
that has been processed but not printed, and this would introduce an unwanted
delay.

Because o1d is created empty, the first output from watchwho is a list of
all users currently logged in. Changing the command that initially creates old
to who >$01d will cause watchwho to print only the changes; it’s a matter of
taste.

Another looping program is one that watches your mailbox periodically;
whenever the mailbox changes, the program prints “You have mail.” This is
a useful alternative to the shell’s built-in mechanism using the variable MAIL.
We have implemented it with shell variables instead of files, to illustrate a dif-
ferent way of doing things.
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$ cat checkmail
# checkmail: watch mailbox for growth

PATH=/bin:/usr/bin
MAIL=/usr/spool/mail/‘getname' # system dependent

t=${1-60}

x=""1ls -1 $MAIL‘"

while
do
y="'1ls -1 $MATL‘"
echo $x $y
x="$y"
sleep $t
done | awk ‘$4 < $12 { print "You have mail" 1}~
$

We have used awk again, this time to ensure that the message is printed only
when the mailbox grows, not merely when it changes. Otherwise, you’ll get a
message right after you delete mail. (The shell’s built-in version suffers from
this drawback.)

The time interval is normally set to 60 seconds, but if there is a parameter
on the command line, as in

$ checkmail 30

that is used instead. The shell variable t is set to the time if one is supplied,
and to 60 if no value was given, by the line

t=${1-60}

This introduces another feature of the shell.
${var} is equivalent to $var, and can be used to avoid problems with
variables inside strings containing letters or numbers:

$ var=hello

$ varx=goodbye
$ echo $var
hello

$ echo $varx
goodbye

$ echo ${var}x
hellox

$

Certain characters inside the braces specify special processing of the variable.
If the variable is undefined, and the name is followed by a question mark, then
the string after the ? is printed and the shell exits (unless it’s interactive). If
the message is not provided, a standard one is printed:
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$ echo ${var?}

hello O .K.; var is set
$ echo ${junk?}

junk: parameter not set Default message
$ echo ${junk?error!}

junk: error! Message provided
$

Note that the message generated by the shell always contains the name of the
undefined variable.

Another form is ${var-thing} which evaluates to $var if it is defined,
and thing if it is not. ${var=thing} is similar, but also sets $var to
thing:

$ echo ${junk-’Hi there’}

Hi there

$ echo ${junk?}

junk: parameter not set junk unaffected

$ echo ${junk="Hi there’}

Hi there

$ echo ${junk?}

Hi there junk set to Hi there
$

The rules for evaluating variables are given in Table 5.3.
Returning to our original example,

t=${1-601}

sets t to $1, or if no argument is provided, to 60.

Table 5.3: Evaluation of Shell Variables

$var value of var; nothing if var undefined
${var} same; useful if alphanumerics follow variable name
${var-thing} value of var if defined; otherwise thing.
$var unchanged.
${var=thing} value of var if defined; otherwise thing.

If undefined, $var set to thing
${var?message} if defined, $var. Otherwise, print message
and exit shell. If message empty, print:
var: parameter not set
${var+thing} thing if $var defined, otherwise nothing

Exercise 5-9. Look at the implementation of true and false in /bin or /usr/bin.
(How would you find out where they are?) O

Exercise 5-10. Change watchfor so that multiple arguments are treated as different
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people, rather than requiring the user to type * joeimary’. O

Exercise 5-11. Write a version of watchwho that uses comm instead of awk to compare
the old and new data. Which version do you prefer? O

Exercise 5-12. Write a version of watchwho that stores the who output in shell vari-
ables instead of files. Which version do you prefer? Which version runs faster?
Should watchwho and checkmail do & automatically? O

Exercise 5-13. What is the difference between the shell : do-nothing command and the
# comment character? Are both needed? O

5.4 Traps: catching interrupts

If you hit DEL or hang up the phone while watchwho is running, one or
two temporary files are left in /tmp. watchwho should remove the temporary
files before it exits. We need a way to detect when such events happen, and a
way to recover.

When you type DEL, an interrupt signal is sent to all the processes that you
are running on that terminal. Similarly, when you hang up, a hangup signal is
sent. There are other signals as well. Unless a program has taken explicit
action to deal with signals, the signal will terminate it. The shell protects pro-
grams run with & from interrupts but not from hangups.

Chapter 7 discusses signals in detail, but you needn’t know much to be able
to handle them in the shell. The shell buiit-in command trap sets up a
sequence of commands to be executed when a signal occurs:

trap sequence-of-commands list of signal numbers

The sequence-of-commands is a single argument, so it must almost always be
quoted. The signal numbers are small integers that identify the signal. For
example, 2 is the signal generated by pressing the DEL key, and 1 is generated
by hanging up the phone. The signal numbers most often useful to shell pro-
grammers are listed in Table 5.4.

Table 5.4: Shell Signal Numbers

shell exit (for any reason, including end of file)
hangup

interrupt (DEL key)

quit (ctl-\; causes program to produce core dump)
kill (cannot be caught or ignored)

terminate, default signal generated by ki11(1)

UYWw WwN 20

So to clean up the temporary files in watchwho, a trap call should go just
before the loop, to catch hangup, interrupt and terminate:
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trap ‘rm -f $new $0l1d; exit 1’ 1 2 15

while

The command sequence that forms the first argument to trap is like a subrou-
tine call that occurs immediately when the signal happens. When it finishes,
the program that was running will resume where it was unless the signal killed
it. Therefore, the trap command sequence must explicitly invoke exit, or
the shell program will continue to execute after the interrupt. Also, the com-
mand sequence will be read twice: once when the trap is set and once when it
is invoked. Therefore, the command sequence is best protected with single
quotes, so variables are evaluated only when the trap routines are executed.
It makes no difference in this case, but we will see one later in which it
matters. By the way, the -£ option tells rm not to ask questions.
trap is sometimes useful interactively, most often to prevent a program

from being killed by the hangup signal generated by a broken phone connec-
tion:

$ (trap ’’ 1; long-running-command) &

2134

$

The null command sequence means ‘‘ignore interrupts” in this process and its
children. The parentheses cause the trap and command to be run together in
a background sub-shell; without them, the trap would apply to the login shell
as well as to long-running-command.

The nohup(l) command is a short shell program to provide this service.
Here is the 7th Edition version, in its entirety:

$ cat ‘which nohup‘
trap "" 1 15
if test -t 2>&1

then
echo "Sending output to ‘nohup.out’”
exec nice -5 $* >>nohup.out 2>8&1
else
exec nice -5 $x 2>8&1
fi
$

test -t tests whether the standard output is a terminal, to see if the output
should be saved. The background program is run with nice to give it a lower
priority than interactive programs. (Notice that nohup doesn’t set PATH.
Should it?)

The exec is just for efficiency; the command would run just as well
without it. exec is a shell built-in that replaces the process running this shell
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by the named program, thereby saving one process — the shell that would nor-
mally wait for the program to complete. We could have used exec in several
other places, such as at the end of the enhanced cal program when it invokes
/usr/bin/cal.

By way, the signal 9 is one that can’t be caught or ignored: it always Kills.
From the shell, it is sent as

$ kill -9 processid ...

kill -9 is not the default because a process killed that way is given no chance
to put its affairs in order before dying.

Exercise 5-14. The version of nohup above combines the standard error of the com-
mand with the standard output. Is this a good design? If not, how would you separate
them cleanly? O

Exercise 5-15. Look up the times shell built-in, and add a line to your .profile so
that when you log off the shell prints out how much CPU time you have used. O

Exercise 5-16. Write a program that will find the next available user-id in
/etc/passwd. If you are enthusiastic (and have permission), make it into a command
that will add a new user to the system. What permissions does it need? How should it
handle interrupts? O

5.5 Replacing a file: overwrite

The sort command has an option -o to overwrite a file:

$ sort filel1 -o file2

is equivalent to

$ sort file1 >file2

If file1 and file2 are the same file, redirection with > will truncate the
input file before it is sorted. The -o option, however, works correctly,
because the input is sorted and saved in a temporary file before the output file
is created.

Many other commands could also use a -o option. For example, sed could
edit a file in place:

$ sed ’‘s/UNIX/UNIX(TM)/g’ ch2 -o ch2 Doesn’t work this way!

It would be impractical to modify all such commands to add the option. Furth-
ermore, it would be bad design: it is better to centralize functions, as the shell
does with the > operator. We will provide a program overwrite to do the
job. The first design is like this:

$ sed ’‘s/UNIX/UNIX(TM)/g’ ch2 | overwrite ch2

The basic implementation is straightforward — just save away the input
until end of file, then copy the data to the argument file:
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# overwrite:
# version 1.

copy standar
BUG here

PATH=/bin:/usx/bin

case $# in
1)
*)
esac

.
’9

echo ’‘Usage: overw

new=/tmp/overwr.$$

trap ‘rm -f $new; exit 1’
cat >$new #
cp $new $1 #

rm -f $new
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d input to output after EOF

rite file’ 1>&2; exit 2

12 15

collect the input
overwrite the input file

cp is used instead of mv so the permissions and owner of the output file aren’t

changed if it already exists.

Appealingly simple as this version is, it has a fatal flaw: if the user types
DEL during the cp, the original input file will be ruined. We must prevent an
interrupt from stopping the overwriting of the input file:

# overwrite:
# version 2.

copy standar
BUG here too

PATH=/bin:/usr/bin
case $# in

1)

*)

HH
echo ’‘Usage: overw

esac

new=/tmp/overwri.$$
old=/tmp/overwr2.$$
trap ‘rm -f $new $o0ld; exi

cat >$new #

cp $1 $o0ld #
trap " 1 2 15 #
cp $new $1 #

rm -f $new $old

If a DEL happens before the original fi
are removed and the file is left alone.

d input to output after EOF

rite file’ 1>&2; exit 2

t 1" 12 15

collect the input
save original file

we are committed; ignore signals
overwrite the input file

le is touched, then the temporary files
After the backup is made, signals are

ignored so the last cp won’t be interrupted — once the cp starts, overwrite
is committed to changing the original file.
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There is still a subtle problem. Consider:

$ sed ’s/UNIX/UNIX(TM)g’ precious | overwrite precious

command garbled: s/UNIX/UNIX(TM)g

$ 1s -1 precious

-rw-rw-rw- 1 you 0 Oct 1 09:02 precious #3$%@*!
$

If the program providing input to overwrite gets an error, its output will be
empty and overwrite will dutifully and reliably destroy the argument file.

A number of solutions are possible. overwrite could ask for confirma-
tion before replacing the file, but making overwrite interactive would negate
much of its merit. overwrite could check that its input is non-empty (by
test -z), but that is ugly and not right, either: some output might be gen-
erated before an error is detected.

The best solution is to run the data-generating program under
overwrite’s control so its exit status can be checked. This is against tradi-
tion and intuition — in a pipeline, overwrite would normally go at the end.
But to work properly it must go first. overwrite produces nothing on its
standard output, however, so no generality is lost. And its syntax isn’t
unheard of: time, nice and nohup are all commands that take another com-
mand as arguments.

Here is the safe version:

# overwrite: copy standard input to output after EOF
# final version

opath=$PATH
PATH=/bin:/usr/bin

case $# in
0i11) echo ‘Usage: overwrite file cmd [args]’ 1>&2; exit 2
esac

file=$1; shift
new=/tmp/overwr1.$$; old=/tmp/overwr2.$$
trap ‘rm -f $new $0ld; exit 1° 1 2 15 # clean up files

if PATH=$opath "$@" >$new # collect input
then
cp $file $old # save original file
trap ’ 1 2 15 # we are committed; ignofe signals
cp $new $file
else
echo "overwrite: $1 failed, $file unchanged" 1>&2
exit 1
fi
rm -f $new $o0ld
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The shell built-in command shift moves the entire argument list one posi-
tion to the left: $2 becomes $1, $3 becomes $2, etc. "$@" provides all the
arguments (after the shift), like $*, but uninterpreted; we’ll come back to it
in Section 5.7.

Notice that PATH is restored to run the user’s command; if it weren’t, com-
mands that were not in /bin or /usr/bin would be inaccessible to
overwrite.

overwrite now works (if somewhat clumsily):

$ cat notice

UNIX is a Trademark of Bell Laboratories

$ overwrite notice sed ’s/UNIXUNIX(TM)/g’ notice
command garbled: s/UNIXUNIX(TM)/g

overwrite: sed failed, notice unchanged

$ cat notice

UNIX is a Trademark of Bell Laboratories Unchanged
$ overwrite notice sed ‘s/UNIX/UNIX(TM)/g’ notice
$ cat notice

UNIX(TM) is a Trademark of Bell Laboratories

$

Using sed to replace all occurrences of one word with another is a common
thing to do. With overwrite in hand, a shell file to automate the task is
easy:

$ cat replace
# replace: replace str1 in files with str2, in place

PATH=/bin:/usr/bin

case $# in

0/112) echo ’‘Usage: replace str1 str2 files’ 1>&2; exit 1
esac

left="$1"; right="$2"; shift; shift

for i
do
overwrite $i sed "s@$left@$right@g" $i
done
$ cat footnote
UNIX is not an acronym
$ replace UNIX Unix footnote
$ cat footnote
Unix is not an acronym

$

(Recall that if the list on a for statement is empty, it defaults to $x.) We
used @ instead of / to delimit the substitute command, since @ is somewhat
less likely to conflict with an input string.
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replace sets PATH to /bin:/usr/bin, excluding $HOME/bin. This
means that overwrite must be in /usr/bin for replace to work. We
made this assumption for simplicity; if you can’t install overwrite in
/usr/bin, you will have to put $HOME/bin in PATH inside replace, or
give overwrite’s pathname explicitly. From now on, we will assume that the
commands we are writing reside in /usr/bin; they are meant to.

Exercise 5-17. Why doesn’t overwrite use signal code 0 in the trap so the files are
removed when it exits? Hint: Try typing DEL while running the following program:

trap "echo exiting; exit 1" 0 2
sleep 10

a

Exercise 5-18. Add an option -v to replace to print all changed lines on /dev/tty.
Strong hint: s/$left/$right/g$vflag. O

Exercise 5-19. Fix replace so it works regardless of the characters in the substitution
strings. O

Exercise 5-20. Can replace be used to change the variable i to index everywhere in
a program? How could you change things to make this work? O

Exercise 5-21. Is replace convenient and powerful enough to belong in /usr/bin?
Is it preferable to simply typing the correct sed commands when needed? Why or why
not? O

Exercise 5-22. (Hard)

$ overwrite file ’who | sort’

doesn’t work. Explain why not, and fix it. Hint: see eval in sh(l). How does your
solution affect the interpretation of metacharacters in the command? O

5.6 zap: killing processes by name

The kill command only terminates processes specified by process-id.
When a specific background process needs to be killed, you must usually run
ps to find the process-id and then laboriously re-type it as an argument to
kill. But it’s silly to have one program print a number that you immediately
transcribe manually to another. Why not write a program, say zap, to auto-
mate the job?

One reason is that killing processes is dangerous, and care must be taken to
kill the right processes. A safeguard is always to run zap interactively, and
use pick to select the victims. '

A quick reminder about pick: it prints each of its arguments in turn and
asks the user for a response; if the response is y, the argument is printed.
(pick is the subject of the next section.) zap uses pick to verify that the
processes chosen by name are the ones the user wants to kill:
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$ cat zap

# zap pattern: kill all processes matching pattern

# BUG in this version
PATH=/bin:/usr/bin
case $# in

0) echo ‘Usage: zap pattern’ 1>&2; exit 1
esac

kill ‘pick \‘'ps -ag | grep "$*"\' | awk ‘{print $1}’°

$

157

Note the nested backquotes, protected by backslashes. The awk program

selects the process-id from the ps output selected by the pick:

$ sleep 1000 &
22126
$ ps -ag

PID TTY TIME CMD

22126 0 0:00 sleep 1000

$ zap sleep

221267

0? g What's going on?
$

The problem is that the output of ps is being broken into words, which are
seen by pick as individual arguments rather than being processed a line at a
time. The shell’s normal behavior is to break strings into arguments at

blank/non-blank boundaries, as in

for i in 1 2 3 4 5

In this program we must control the shell’s division of strings into arguments,

so that only newlines separate adjacent ‘“words.”

The shell variable IFS (internal field separator) is a string of characters
that separate words in argument lists such as backquotes and for statements.
Normally, IFS contains a blank, a tab and a newline, but we can change it to

anything useful, such as just a newline:
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$ echo ’‘echo $#’ >nargs
$ cx nargs

$ who

you tty0 Oct 1 05:59

piw tty2 Oct 1 11:26

$ nargs ‘who‘

10 Ten blank and newline-separated fields
$ IFS=’

’

Just a newline

$ nargs ‘who'

2 Two lines, two fields
$

With IFS set to newline, zap works fine:

$ cat zap
# zap pat: kill all processes matching pat
# final version

PATH=/bin:/usr/bin
IFS="’

’ # just a newline

case $1 in

") echo ‘Usage: zap [-2] pattern’ 1>&2; exit 1 ;;
-*) SIG=$1; shift

esac

echo ’ PID TTY TIME CMD’
kill $SIG ‘pick \‘'ps -ag | egrep "$x"\‘' | awk ‘{print $1}’°
$ ps -ag

PID TTY TIME CMD

22126 0 0:00 sleep 1000

$ zap sleep
PID TTY TIME CMD
22126 0 0:00 sleep 10007 y
23104 0 0:02 egrep sleep? n
$

We added a couple of wrinkles: an optional argument to specify the signal
(note that SIG will be undefined, and therefore treated as a null string if the
argument is not supplied) and the use of egrep instead of grep to permit
more complicated patterns such as ‘sleepidate’. An initial echo prints
out the column headers for the ps output.

You might wonder why this command is called zap instead of just kill.
The main reason is that, unlike our cal example, we aren’t really providing a
new kill command: zap is necessarily interactive, for one thing — and we
want to retain kill for the real one. zap is also annoyingly slow — the
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overhead of all the extra programs is appreciable, although ps (which must be
run anyway) is the most expensive. In the next chapter we will provide a more
efficient implementation.

Exercise 5-23. Modify zap to print out the ps header from the pipeline so that it is
insensitive to changes in the format of ps output. How much does this complicate the
program? O

5.7 The pick command: blanks vs. arguments

We’ve encountered most of what we need to write a pick command in the
shell. The only new thing needed is a mechanism to read the user’s input.
The shell built-in read reads one line of text from the standard input and
assigns the text (without the newline) as the value of the named variable:

$ read greeting

hello, world Type new value for greeting
$ echo $greeting

hello, world

$

The most common use of read is in .profile to set up the environment
when logging in, primarily to set shell variables like TERM.

read can only read from the standard input; it can’t even be redirected.
None of the shell built-in commands (as opposed to the control flow primitives
like for) can be redirected with > or <:

$ read greeting </etc/passwd

goodbye Must type a value anyway

illegal io Now shell reports error

$ echo $greeting

goodbye greeting has typed value, not one from file
$

This might be described as a bug in the shell, but it is a fact of life. For-
tunately, it can usually be circumvented by redirecting the loop surrounding the
read. This is the key to our implementation of the pick command:
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# pick: select arguments
PATH=/bin:/usr/bin

for i # for each argument
do

echo -n "$i? " >/dev/tty

read response

case $response in

y*) echo $i ;;
q#*) break
esac

done </dev/tty

echo -n suppresses the final newline, so the response can be typed on the
same line as the prompt. And, of course, the prompts are printed on
/dev/tty because the standard output is almost certainly not the terminal.
The break statement is borrowed from C: it terminates the innermost
enclosing loop. In this case it breaks out of the for loop when a q is typed.
We let g terminate selection because it’s easy to do, potentially convenient, and
consistent with other programs.
It’s interesting to play with blanks in the arguments to pick:
$ pick "1 2’ 3
1 2°?
37?
$

If you want to see how pick is reading its arguments, run it and just press
RETURN after each prompt. It’s working fine as it stands: for i handles the
arguments properly. We could have written the loop other ways:

$ grep for pick See what this version does
for i in $+

$ pick ‘1 2’ 3

17?

27

3?

$

This form doesn’t work, because the operands of the loop are rescanned, and
the blanks in the first argument cause it to become two arguments. -Try quot-
ing the $*:

$ grep for pick Try a different version
for i in "$x"

$ pick 1 2’ 3

1 2 37

$
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This doesn’t work either, because "$+" is a single word formed from all the
arguments joined together, separated by blanks.

Of course there is a solution, but it is almost black magic: the string "$@"
is treated specially by the shell, and converted into exactly the arguments to
the shell file:

$ grep for pick Try a third version
for i in "$@"

$ pick ‘1 2’ 3

1 27

3?

$

If $@ is not quoted, it is identical to $«; the behavior is special only when it is
enclosed in double quotes. We used it in overwrite to preserve the argu-
ments to the user’s command.

In summary, here are the rules:

e $x and $@ expand into the arguments, and are rescanned; blanks in argu-
ments will result in multiple arguments.

e "$«" is a single word composed of all the arguments to the shell file joined
together with spaces.

e "$@" is identical to the arguments received by the shell file: blanks in argu-
ments are ignored, and the result is a list of words identical to the original
arguments.

If pick has no arguments, it should probably read its standard input, so we
could say

$ pick <mailinglist
instead of
$ pick ‘cat mailinglist'®

But we won’t investigate this version of pick: it involves some ugly complica-
tions and is significantly harder than the same program written in C, which we
will present in the next chapter.

The first two of the following exercises are difficult, but educational to the
advanced shell programmer.

Exercise 5-24. Try writing a pick that reads its arguments from the standard input if
none are supplied on the command line. It should handle blanks properly. Does a q
response work? If not, try the next exercise. O

Exercise 5-25. Although shell built-ins like read and set cannot be redirected, the
shell itself can be temporarily redirected. Read the section of sh(1) that describes exec
and work out how to read from /dev/tty without calling a sub-shell. (It might help
to read Chapter 7 first.) O

Exercise 5-26. (Much easier) Use read in your .profile to initialize TERM and
whatever else depends on it, such as tab stops. O
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5.8 The news command: community service messages

In Chapter 1 we mentioned that your system might have a news command
to report messages of general interest to the user community. Although the
name and details of the command differ, most systems provide a news service.
Our reason for presenting a news command is not to replace your local com-
mand, but to show how easily such a program can be written in the shell. It
might be interesting to compare the implementation of our news command to
your local version.

The basic idea of such programs is usually that individual news items are
stored, one per file, in a special directory like /usr/news. news (that is, our
news program) operates by comparing the modification times of the files in
/usr/news with that of a file in your home directory (.news_time) that
serves as a time stamp. For debugging, we can use ‘.’ as the directory for
both the news files and .news_time; it can be changed to /usr/news when
the program is ready for general use.

$ cat news
# news: print news files, version 1

HOME=. # debugging only
cd . # place holder for /usr/news
for i in ‘ls -t * $HOME/.news_time"
do
case $i in
*/.news_time) break ;;
*) echo news: $i
esac

done

touch $HOME/.news_time
$ touch .news_time

$ touch x

$ touch y

$ news

news: y

news: x

$

touch changes the last-modified time of its argument file to the present
time, without actually modifying the file. For debugging, we just echo the
names of the news files, rather than printing them. The loop terminates when
it discovers .news_time, thereby listing only those files that are newer. Note
that the * in case statements can match a /, which it cannot in filename pat-
terns.

What happens if .news_time doesn’t exist?
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$ rm .news_time
$ news

$

This silence is unexpected, and wrong. It happens because if 1s can’t find a
file, it reports the problem on its standard output, before printing any informa-
tion about existing files. This is undeniably a bug — the diagnostic should be
printed on the standard error — but we can get around it by recognizing the
problem in the loop and redirecting standard error to standard output so all
versions work the same. (This problem has been fixed in newer versions of
the system, but we’ve left it as is to illustrate how you can often cope with
minor botches.)

$ cat news
# news: print news files, version 2

HOME=. # debugging only
cd . # place holder for /usr/news
IFS=’

’

# just a newline
for i in ‘1ls -t * $HOME/.news_time 2>&1°

do
case $i in
*’ not found’) ;;
*/.news_time) break ;;
*) echo news: $i ;;
esac
done

touch $HOME/.news_time
$ rm .news_time

$ news
news: news
news: y
news: x

$

We must set IFS to newline so the message

./.news_time not found

is not parsed as three words.

news must next print the news files, rather than echoing their names. It’s
useful to know who posted a message and when, so we use the set command
and 1s -1 to print a header before the message itself:
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$ 1s -1 news

-rwxrwxrwx 1 you 208 Oct 1 12:05 news

$ set ‘ls -1 news®

-rwxrwxrwx: bad option(s) Something is wrong!
$

Here is one example where the interchangeability of program and data in the
shell gets in the way. set complains because its argumen (‘‘-rwxrwxrwx’’
begins with a minus sign and thus looks like an option. An easy (if inelegant)
fix is to prefix the argument by an ordinary character:

$ set X'ls -1 news'

$ echo "news: ($3) $5 $6 $7"
news: (you) Oct 1 12:05

$

This is a reasonable format, showing the author and date of the message along
with the filename.
Here is the final version of the news command:

# news: print news files, final version

PATH=/bin:/usr/bin
IFS="’

# just a newline
cd /usr/news

for i in ‘ls -t * $HOME/.news_time 2>&1°
do

IFS=" '

case $i in

*’ not found’) ;;

*/.news_time) break ;;

%) set X'1ls -1 $i°

echo "

$i: ($3) $5 $6 $7
"

cat $i
esac
done
touch $HOME/.news_time

The extra newlines in the header separate the news items as they are printed.
The first value of IFS is just a newline, so the not found message (if any)
from the first 1s is treated as a single argument. The second assignment to
IFS resets it to a blank, so the output of the second 1s is split into multiple
arguments.

Exercise 5-27. Add an option -n (notify) to news to report but not print the news
items, and not touch .news_time. This might be placed in your .profile. O
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Exercise 5-28. Compare our design and implementation of news to the similar com-
mand on your system. O

5.9 get and put: tracking file changes

In this section, the last of a long chapter, we will show a larger, more com-
plicated example that illustrates cooperation of the shell with awk and sed.

A program evolves as bugs are fixed and features are added. It is some-
times convenient to keep track of these versions, especially if people take the
program to other machines — they will come back and ask ‘“What has changed
since we got our version?” or “How did you fix the such-and-such bug?”
Also, always maintaining backup copies makes it safer to try out ideas: if
something doesn’t work out, it’s painless to revert to the original program.

One solution is to keep copies of all the versions around, but that is diffi-
cult to organize and expensive in disc space. Instead, we will capitalize on the
likelihood that successive versions have large portions in common, which need
to be stored only once. The diff -e command

$ diff -e old new

generates a list of ed commands that will convert old into new. It is there-
fore possible to keep all the versions of a file in a single (different) file by
maintaining one complete version and the set of editing commands to convert it
into any other version.

There are two obvious organizations: keep the newest version intact and
have editing commands go backwards in time, or keep the oldest version and
have editing commands go forwards. Although the latter is slightly easier to
program, the former is faster if there are many versions, because we are
almost always interested in recent versions.

We chose the former organization. In a single file, which we’ll call the his-
tory file, there is the current version followed by sets of editing commands that
convert each version into the previous (i.e., next older) one. Each set of edit-
ing commands begins with a line that looks like

@@@ person date summary

The summary is a single line, provided by person, that describes the change.
There are two commands to maintain versions: get extracts a version from
the history file, and put enters a new version into the history file after asking
for a one-line summary of the changes.
Before showing the implementation, here is an example to show how get
and put work and how the history file is maintained:
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$ echo a line of text >junk

$ put junk

Summary: make a new file Type the description
get: no file junk.H History doesn’t exist. ..
put: creating junk.H ... S0 put creates it

$ cat junk.H

a line of text

@@@ you Sat Oct 1 13:31:03 EDT 1983 make a new file
$ echo another line >>junk

$ put junk

Summary: one line added

$ cat junk.H

a line of text

another line

@@@ you Sat Oct 1 13:32:28 EDT 1983 one line added

24

@@@ you Sat Oct 1 13:31:03 EDT 1983 make a new file
$

The “editing commands” consist of the single line 2d, which deletes line 2 of
the file, turning the new version into the original.

$ rm junk

$ get junk Most recent version
$ cat junk

a line of text

another line

$ get -1 junk

$ cat junk Newest-but-one version
a line of text

$ get junk Most recent again

$ replace another ’‘a different’ junk Change it

$ put junk

Summary: second line changed

$ cat junk.H

a line of text

a different line

@@@ you Sat Oct 1 13:34:07 EDT 1983 second line changed
2c

another line

@@@ you Sat Oct 1 13:32:28 EDT 1983 one line added
2d

@@@ you Sat Oct 1 13:31:03 EDT 1983 make a new file
$

The editing commands run top to bottom throughout the history file to extract
the desired version: the first set converts the newest to the second newest, the
next converts that to the third newest, etc. Therefore, we are actually convert-
ing the new file into the old one a version at a time when running ed.
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There will clearly be trouble if the file we are modifying contains lines
beginning with a triple at-sign, and the BUGS section of diff(1) warns about
lines that contain only a period. We chose @@@ to mark the editing commands
because it’s an unlikely sequence for normal text.

Although it might be instructive to show how the get and put commands
evolved, they are relatively long and showing their various forms would
require too much discussion. We will therefore show you only their finished
forms. put is simpler:

# put: install file into history
PATH=/bin:/usr/bin

case $# in

1) HIST=$1.H ;;
*) echo ‘Usage: put file’ 1>&2; exit 1 ;;
esac
if test | -r $1
then
echo "put: can’t open $1" 1>&2
exit 1
fi

trap ‘rm -f /tmp/put.[abl$$; exit 1 1 2 15
echo -n ‘Summary: ’
read Summary

if get -o /tmp/put.as$$ $1 # previous version
then # merge pieces
cp $1 /tmp/put.bs$s$ # current version

echo "@@@ ‘getname‘' ‘date' $Summary" >>/tmp/put.b$$
diff -e $1 /tmp/put.a$$ >>/tmp/put.b$$ # latest diffs
sed -n '/"@@R/,$p’ <$HIST >>/tmp/put.b$$ # old diffs
overwrite $HIST cat /tmp/put.bs$$ # put it back
else # make a new one
echo "put: creating $HIST"
cp $1 $HIST
echo "@@@ ‘getname‘' ‘date‘ $Summary" >>$HIST
fi
rm -f /tmp/put.[abl$$

After reading the one-line summary, put calls get to extract the previous ver-
sion of the file from the history file. The -o option to get specifies an alter-
nate output file. If get couldn’t find the history file, it returns an error status
and put creates a new history file. If the history file does exist, the then
clause creates the new history in a temporary file from, in order, the newest
version, the @@@ line, the editor commands to convert from the newest version
to the previous, and the old editor commands and @@@ lines. Finally, the tem-
porary file is copied onto the history file using overwrite.
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get is more complicated than put, mostly because it has options.

# get: extract file from history
PATH=/bin:/usr/bin

VERSION=0
while test "$1" 1= ""
do
case "$1" in
-i) INPUT=$2; shift ;;
-o) OUTPUT=$2; shift ;;
-[0-9]1) VERSION=%1 ;;
-%) echo "get: Unknown argument $i" 1>&2; exit 1 ;;
*) case "$OUTPUT" in
"") OUTPUT=$1 ;;
*) INPUT=$1.H ;;
esac
esac
shift
done
OUTPUT=$ {OUTPUT?"Usage: get [-o0 outfile] [-i file.H] file"}
INPUT=$ { INPUT-$OUTPUT.H}
test -r $INPUT i! { echo "get: no file $INPUT" 1>&2; exit 1; }
trap ‘rm -f /tmp/get.[abl$$; exit 1 1 2 15
# split into current version and editing commands
sed <$INPUT -n ’1,/"@@R@R/w /tmp/get.a’$$’
/"@@@/,$w /tmp/get.b’$$
# perform the edits
awk </tmp/get.b$$ ’
/"@@@/ { count++ }
'1/"@@@/ && count > 0 && count <= - ‘$VERSION’
END { print "$4"; print "w", "’$OUTPUT’" }
| ed - /tmp/get.a$$
rm -f /tmp/get.[abl$$

The options are fairly ordinary. -i and -o specify alternate input and output.
-[0-9] selects a particular version: 0 is the newest version (the default), -1
the newest-but-one, etc. The loop over arguments is a while with a test
and a shift, rather than a for, because some of the options (-i, -o) con-
sume another argument and must therefore shift it out, and for loops and
shifts do not cooperate properly if the shift is inside the for. The ed

option ‘-’ turns off the character count that normally accompanies reading or
writing a file.

The line

test -r $INPUT !! { echo "get: no file $INPUT" 1>&2; exit 1; }

is equivalent to
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if test ! -r $INPUT

then
echo "get: no file $INPUT" 1>&2
exit 1

fi

(which is the form we used in put) but is shorter to write and clearer to pro-
grammers who are familiar with the i i operator. Commands between { and }
are executed in the current shell, not a sub-shell; this is necessary here so the
exit will exit from get and not just a sub-shell. The characters { and } are
like do and done — they have special meaning only if they follow a semi-
colon, newline or other command terminator.

Finally, we come to the code in get that does the work. First, sed breaks
the history file into two pieces: the most recent version and the set of edits.
The awk program then processes the editing commands. @@@ lines are counted
(but not printed), and as long as the count is not greater than the desired ver-
sion, the editing commands are passed through (recall that the default awk
action is to print the input line). Two ed commands are added after those
from the history file: $d deletes the single @@@ line that sed left on the
current version, and a w command writes the file to its final location.
overwrite is unnecessary here because get changes only the version of the
file, not the precious history file.

Exercise 5-29. Write a command version that does two things:

$ version -5 file
reports the summary, modification date and person making the modification of the
selected version in the history file.

$ version sep 20 file
reports which version number was current on September 20. This would typically be
used in:

$ get ‘version sep 20 file'

(version can echo the history filename for convenience.) O
Exercise 5-30. Modify get and put so they manipulate the history file in a separate
directory, rather than cluttering up the working directory with .H files. O

Exercise 5-31. Not all versions of a file are worth remembering once things settle
down. How can you arrange to delete versions from the middle of the history file? O

5.10 A look back

When you're faced with writing a new program, there’s a natural tendency
to start thinking immediately about how to write it in your favorite program-
ming language. In our case, that language is most often the shell.

Although it has some unusual syntax, the shell is an excellent programming
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language. It is certainly high-level; its operators are whole programs. Since it
is interactive, programs can be developed interactively, and refined in small
steps until they “work.” After that, if they are intended for more than per-
sonal use, they can be polished and hardened for a wider user population. In
those infrequent cases where a shell program turns out to be too inefficient,
some or all of it can be rewritten in C, but with the design already proven and
a working implementation in hand. (We’ll follow this path a couple of times in
the next chapter.)

This general approach is characteristic of the UNIX programming environ-
ment — build on what others have done instead of starting over from nothing;
start with something small and let it evolve; use the tools to experiment with
new ideas.

In this chapter, we’ve presented many examples that are easy to do with
existing programs and the shell. Sometimes it’s enough merely to rearrange
arguments; that was the case with cal. Sometimes the shell provides a loop
over a set of filenames or through a sequence of command executions, as in
watchfor and checkmail. More complicated examples are still less work
than they would be in C; for instance, our 20-line shell version of news
replaces a 350-line [sic] version written in C.

But it’s not enough to have a programmable command language. Nor is it
enough to have a lot of programs. What matters is that all of the components
work together. They share conventions about how information is represented
and communicated. Each is designed to focus on one job and do it well. The
shell then serves to bind them together, easily and efficiently, whenever you
have a new idea. This cooperation is why the UNIX programming environment
is so productive.

History and bibliographic notes

The idea for get and put comes from the Source Code Control System
(SCCS) originated by Marc Rochkind (‘“The source code control system,” IEEE
Trans. on Software Engineering, 1975). SCCS is far more powerful and flexible
than our simple programs; it is meant for maintenance of large programs in a
production environment. The basis of SCCS is the same diff program, how-
ever.
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So far we have used existing tools to build new ones, but we are at the limit
of what can be reasonably done with the shell, sed and awk. In this chapter
we are going to write some simple programs in the C programming language.
The basic philosophy of making things that work together will continue to
dominate the discussion and the design of the programs — we want to create
tools that others can use and build on. In each case, we will also try to show a
sensible implementation strategy: start with the bare minimum that does some-
thing useful, then add features and options (only) if the need arises.

There are good reasons for writing new programs from scratch. It may be
that the problem at hand just can’t be solved with existing programs. This is
often true when the program must deal with non-text files, for example — the
majority of the programs we have shown so far really work well only on tex-
tual information. Or it may be too difficult to achieve adequate robustness or
efficiency with just the shell and other general-purpose tools. In such cases, a
shell version may be good for honing the definition and user interface of a pro-
gram. (And if it works well enough, there’s no point re-doing it.) The zap
program from the last chapter is a good example: it took only a few minutes to
write the first version in the shell, and the final version has an adequate user
interface, but it’s too slow.

We will be writing in C because it is the standard language of UNIX systems
— the kernel and all user programs are written in C — and, realistically, no
other language is nearly as well supported. We will assume that you know C,
at least well enough to read along. If not, read The C Programming Language,
by B. W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978).

We will also be using the ‘‘standard I/O library,” a collection of routines
that provide efficient and portable I/O and system services for C programs.
The standard I/O library is available on many non-UNIX systems that support
C, so programs that confine their system interactions to its facilities can easily
be transported.

The examples we have chosen for this chapter have a common property:
they are small tools that we use regularly, but that were not part of the 7th
Edition. If your system has similar programs, you may find it enlightening to

171
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compare designs. And if they are new to you, you may find them as useful as
we have. In any case, they should help to make the point that no system is
perfect, and that often it is quite easy to improve things and to cover up
defects with modest effort.

6.1 Standard input and output: vis

Many programs read only one input and write one output; for such pro-
grams, I/O that uses only standard input and standard output may be entirely
adequate, and it is almost always enough to get started.

Let us illustrate with a program called vis that copies its standard input to
its standard output, except that it makes all non-printing characters visible by
printing them as \nnn, where nnn is the octal value of the character. vis is
invaluable for detecting strange or unwanted characters that may have crept
into files. For instance, vis will print each backspace as \010, which is the
octal value of the backspace character:

$ cat x

abc

$ vis <x
abc\010\010\010
$

To scan multiple files with this rudimentary version of vis, you can use cat
to collect the files:

$ cat file1 file2 ... | vis

$ cat file1 file2 ... | vis | grep ’\\’

and thus avoid learning how to access files from a program.
By the way, it might seem that you could do this job with sed, since the ‘1’
command displays non-printable characters in an understandable form:

$ sed -n 1 x
abce<<___
$

The sed output is probably clearer than that from vis. But sed was never
meant for non-text files:

$ sed -n 1 /usr/you/bin
$ Nothing at all!

(This was on a PDP-11; on one VAX system, sed aborted, probably because
the input looks like a very long line of text.) So sed is inadequate, and we are
forced to write a new program.

The simplest input and output routines are called getchar and putchar.
Each call to getchar gets the next character from the standard input, which
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may be a file or a pipe or the terminal (the default) — the program doesn’t
know which. Similarly, putchar(c) puts the character ¢ on the standard
output, which is also by default the terminal.

The function print£(3) does output format conversion. Calls to printf
and putchar may be interleaved in any order; the output will appear in the
order of the calls. There is a corresponding function scanf(3) for input for-
mat conversion; it will read the standard input and break it up into strings,
numbers, etc., as desired. Calls to scanf and getchar may also be inter-
mixed.

Here is the first version of vis:

/% vis: make funny characters visible (version 1) */

#include <stdio.h>
#include <ctype.h>

main()
{
int cj
while ((c = getchar()) != EOF)
if (isascii(c) &&
(isprint(c) i1 c==’\n’ ! c==’\t’ i c==’ "’))
putchar(c);
else
printf ("\\%030", c);
exit(0);

}

getchar returns the next byte from the input, or the value EOF when it
encounters the end of file (or an error). By the way, EOF is not a byte from
the file; recall the discussion of end of file in Chapter 2. The value of EOF is
guaranteed to be different from any value that occurs in a single byte so it can
be distinguished from real data; c is declared int, not char, so that it is big
enough to hold the EOF value. The line

#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to
read a header file (/usr/include/stdio.h) of standard routines and sym-
bols that includes the definition of EOF. We will use <stdio.h> as a short-
hand for the full filename in the text.

The file <ctype.h> is another header file in /usr/include that defines
machine-independent tests for determining the properties of characters. We
used isascii and isprint here, to determine whether the input character is
ASCII (i.e., value less than 0200) and printable; other tests are listed in Table
6.1. Notice that newline, tab and blank are not “‘printable” by the definitions
in <ctype.h>.
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The call to exit at the end of vis is not necessary to make the program
work properly, but it ensures that any caller of the program will see a normal
exit status (conventionally zero) from the program when it completes. An
alternate way to return status is to leave main with return 0; the return
value from main is the program’s exit status. If there is no explicit return or
exit, the exit status is unpredictable.

To compile a C program, put the source in a file whose name ends in .c,
such as vis.c, compile it with cc, then run the result, which the compiler
leaves in a file called a.out (‘a’ is for assembler):

$ cc vis.c

$ a.out

hello worldctl-g
hello world\007
ctl-d

$

Normally you would rename a.out once it’s working, or use the cc option -o
to do it directly:

$ cc -o vis vis.c Output in vis, not a.out

Exercise 6-1. We decided that tabs should be left alone, rather than made visible as
\011 or > or \t, since our main use of vis is looking for truly anomalous characters.
An alternate design is to identify every character of output unambiguously — tabs, non-
graphics, blanks at line ends, etc. Modify vis so that characters like tab, backslash,
backspace, formfeed, etc., are printed in their conventional C representations \t, \\,
\b, \f, etc., and so that blanks at the ends of lines are marked. Can yoa do this
unambiguously? Compare your design with

$ sed -n 1
[m]

Exercise 6-2. Modify vis so that it folds long lines at some reasonable length. How
does this interact with the unambiguous output required in the previous exercise? O

6.2 Program arguments: vis version 2

When a C program is executed, the command-line arguments are made
available to the function main as a count argc and an array argv of pointers
to character strings that contain the arguments. By convention, argv[0] is
the command name itself, so argc is always greater than 0; the “‘useful’ argu-
ments are argv[1] ... argvlargc-1]. Recall that redirection with < and >
is done by the shell, not by individual programs, so redirection has no effect on
the number of arguments seen by the program.

To illustrate argument handling, let’s modify vis by adding an optional
argument: vis -s strips out any non-printing characters rather than displaying
them prominently. This option is handy for cleaning up files from other sys-
tems, for example those that use CRLF (carriage return and line feed) instead
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Table 6.1: <ctype.h> Character Test Macros

isalpha(c) alphabetic: a-z A-Z
isupper(c) upper case: A-2

islower(c) lower case: a-z

isdigit(c) digit: 0-9

isxdigit(c) hexadecimal digit: 0-9 a-f A-F

isalnum(c) alphabetic or digit

isspace(c) blank, tab, newline, vertical tab, formfeed, return
ispunct(c) not alphanumeric or control or space

isprint(c) printable: any graphic

iscntrl(c) control character: 0 <= ¢ < 040 ii ¢ == 0177
isascii(c) ASCII character: 0 <= ¢ <= 0177

of newline to terminate lines.

/% vis: make funny characters visible (version 2) */

#include <stdio.h>
#include <ctype.h>

main(argc, argv)
int argc;
char sargv[];

{
int ¢, strip = 0;
if (argec > 1 && strcmp(argv[1], "-s") == 0)
strip = 1;
while ((c = getchar()) != EOF)
if (isascii(c) &&
(isprint(c) 11 c==’\n’ || c==’\t’ || ¢c==" "))
putchar(c);
else if (!strip)
printf("\\%030", c);
exit(0);
}

argv is a pointer to an array whose individual elements are pointers to arrays
of characters; each array is terminated by the ASCII character NUL (“\0’), so
it can be treated as a string. This version of vis starts by checking to see if
there is an argument and if it is -s. (Invalid arguments are ignored.) The
function strcmp(3) compares two strings, returning zero if they are the same.
Table 6.2 lists a set of string handling and general utility functions, of
which strcmp is one. It’s usually best to use these functions instead of writ-
ing your own, since they are standard, they are debugged, and they are often
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faster than what you can write yourself because they have been optimized for
particular machines (sometimes by being written in assembly language).

Exercise 6-3. Change the -s argument so that vis -sn will print only strings of n or
more consecutive printable characters, discarding non-printing characters and short
sequences of printable ones. This is valuable for isolating the text parts of non-text files
such as executable programs. Some versions of the system provide a strings program
that does this. Is it better to have a separate program or an argument to vis? O

Exercise 6-4. The availability of the C source code is one of the strengths of the UNIX
system — the code illustrates elegant solutions to many programming problems. Com-
ment on the tradeoff between readability of the C source and the occasional optimiza-
tions obtained from rewriting in assembly language. O

Table 6.2: Standard String Functions

strcat(s,t) append string t to string s; return s
struncat(s,t,n) append at most n characters of t to s
strcpy(s,t) copy t to s; return s
strncpy(s,t,n) copy exactly n characters; null pad if necessary
stremp(s,t) compare s and t, return <0, 0, >0 for <, ==, >
strncmp(s,t,n) compare at most n characters
strlen(s) return length of s
strchr(s,c) return pointer to first ¢ in s, NULL if none
strrchr(s,c) return pointer to last ¢ in s, NULL if none.

These are index and rindex on older systems
atoil(s) return integer value of s
atof(s) return floating point value of s;

needs declaration double atof ()
malloc(n) return pointer to n bytes of memory, NULL if can’t
calloc(n,m) return pointer to nXm bytes, set to 0, NULL if can’t.

malloc and calloc return char *
free(p) free memory allocated by malloc or calloc

6.3 File access: vis version 3

The first two versions of vis read the standard input and write the stan-
dard output, which are both inherited from the sheil. The next step is to
modify vis to access files by their names, so that

$ vis filel file2 ...

will scan the named files instead of the standard input. If there are no
filename arguments, though, we still want vis to read its standard input.

The question is how to arrange for the files to be read — that is, how to
connect the filenames to the 1/O statements that actually read the data.

The rules are simple. Before it can be read or written a file must be opened
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by the standard library function fopen. fopen takes a filename (like temp
or /etc/passwd), does some housekeeping and negotiation with the kernel,
and returns an internal name to be used in subsequent operations on the file.

This internal name is actually a pointer, called a file pointer, to a structure
that contains information about the file, such as the location of a buffer, the
current character position in the buffer, whether the file is being read or writ-
ten, and the like. One of the definitions obtained by including <stdio.h> is
for a structure called FILE. The declaration for a file pointer is

FILE xfp;

This says that £p is a pointer to a FILE. fopen returns a pointer to a FILE;
there is a type declaration for fopen in <stdio.h>.
The actual call to fopen in a program is

char #name, *mode;

fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string.
The second argument, also a character string, indicates how you intend to use
the file; the legal modes are read ("r"), write ("w"), or append ("a").

If a file that you open for writing or appending does not exist, it is created,
if possible. Opening an existing file for writing causes the old contents to be
discarded. Trying to read a file that does not exist is an error, as is trying to
read or write a file when you don’t have permission. If there is any error,
fopen will return the invalid pointer value NULL (which is defined, usually as
(char *)0, in <stdio.h>).

The next thing needed is a way to read or write the file once it is open.
There are several possibilities, of which getc and putc are the simplest.
getc gets the next character from a file.

c = getc(fp)

places in ¢ the next character from the file referred to by £p; it returns EOF
when it reaches end of file. putc is analogous to getc:

putc(c, fp)

puts the character ¢ on the file £p and returns c. getc and putc return EOF
if an error occurs.

When a program is started, three files are open already, and file pointers
are provided for them. These files are the standard input, the standard output,
and the standard error output; the corresponding file pointers are called
stdin, stdout, and stderr. These file pointers are declared in
<stdio.h>; they may be used anywhere an object of type FILE * can be.
They are constants, however, not variables, so you can’t assign to them.

getchar () is the same as getc(stdin) and putchar(c) is the same as
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putc(c,stdout). In fact, all four of these ‘‘“functions’ are defined as mac-
ros in <stdio.h>, since they run faster by avoiding the overhead of a func-
tion call for each character. See Table 6.3 for some other definitions in
<stdio.h>.

With some of the preliminaries out of the way, we can now write the third
version of vis. If there are command-line arguments, they are processed in
order. If there are no arguments, the standard input is processed.

/% vis: make funny characters visible (version 3) */

#include <stdio.h>
#include <ctype.h>
int strip = 0; /% 1 => discard special characters x/

main(argc, argv)
int argc;
char xargv([];

{
int i;
FILE *fp;
while (argc > 1 && argv[1][0] == "-") {
switch (argv[1101]1) {
case ’s’: /% -s: strip funny chars */
strip = 1;
break;
default:
fprintf(stderr, "%s: unknown arg %s\n",
argv[0], argv[1]);
exit(1);
}
argc--;
argv++;
}
if (argc == 1)
vis(stdin);
else
for (i = 1; i < argc; i++)
if ((fp=fopen(argv[i], "r")) == NULL) {
fprintf(stderr, "%s: can’t open %s\n",
argv[0], argv(il);
exit(1);
} else {
vis(£fp);
fclose(fp);
}
exit(0);
}

This code relies on the convention that optional arguments come first. After
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Table 6.3: Some <stdio.h> Definitions

stdin standard input

stdout standard output

stderr standard error

EOF end of file; normally -1

NULL invalid pointer; normally 0

FILE used for declaring file pointers

BUFSIZ normal I/O buffer size (often 512 or 1024)
getc(£fp) return one character from stream fp

getchar() getc(stdin)

putc(c,fp) put character c on stream fp

putchar(c) putc(c,stdout)

feof (fp) non-zero when end of file on stream fp
ferror(fp) non-zero when any error on stream fp
fileno(fp) file descriptor for stream fp; see Chapter 7

each optional argument is processed, argc and argv are adjusted so the rest
of the program is independent of the presence of that argument. Even though
vis only recognizes a single option, we wrote the code as a loop to show one
way to organize argument processing. In Chapter 1 we remarked on the
disorderly way that UNIX programs handle optional arguments. One reason,
aside from a taste for anarchy, is that it’s obviously easy to write code to han-
dle argument parsing for any variation. The function getopt(3) found on
some systems is an attempt to rationalize the situation; you might investigate it
before writing your own.
The routine vis prints a single file:

vis(fp) /* make chars visible in FILE xfp */

FILE *fp;
{
int c;
while ((c = getc(fp)) != EOF)
if (isascii(c) &&
(isprint(c) 1i c==’\n" || c=="\t’ ! c==" "))
putchar(c);
else if (!strip)
printf("\\%030", c);
}

The function fprintf is identical to printf, except for a file pointer
argument that specifies the file to be written.

The function fclose breaks the connection between the file pointer and
the external name that was established by fopen, freeing the file pointer for
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another file. Since there is a limit (about 20) on the number of files that a
program may have open simultaneously, it’s best to free files when they are no
longer needed. Normally, output produced with any of the standard library
functions like printf, putc, etc., is buffered so it can be written in large
chunks for efficiency. (The exception is output to a terminal, which is usually
written as it is produced, or at least when a newline is printed.) Calling
fclose on an output file also forces out any buffered output. fclose is also
called automatically for each open file when a program calls exit or returns
from main.

stderr is assigned to a program in the same way that stdin and stdout
are. Output written on stderr appears on the user’s terminal even if the
standard output is redirected. vis writes its diagnostics on stderr instead of
stdout so that if one of the files can’t be accessed for some reason, the mes-
sage finds its way to the user’s terminal instead of disappearing down a pipe-
line or into an output file. (The standard error was invented somewhat after
pipes, after error messages did start disappearing into pipelines.)

Somewhat arbitrarily, we decided that vis will quit if it can’t open an input
file; this is reasonable for a program most often used interactively, and with a
single input file. You can argue for the other design as well, however.

Exercise 6-5. Write a program printable that prints the name of each argument file
that contains only printable characters; if the file contains any non-printable character,
the name is not printed. printable is useful in situations like this:

]

$ pr ‘printable *' | lpr

Add the option -v to invert the sense of the test, as in grep. What should
printable do if there are no filename arguments? What status should printable
return? O

6.4 A screen-at-a-time printer: p

So far we have used cat to examine files. But if a file is long, and if you
are connected to your system by a high-speed connection, cat produces the
output too fast to be read, even if you are quick with ctl-s and ctl-q.

There clearly should be a program to print a file in small, controllable
chunks, but there isn’t a standard one, probably because the original UNIX sys-
tem was written in the days of hard-copy (paper) terminals and slow communi-
cations lines. So our next example is a program called p that will print a file a
screenful at a time, waiting for a response from the user after each screen
before continuing to the next. (‘‘p” is a nice short name for a program that we
use a lot.) As with other programs, p reads either from files named as argu-
ments or from its standard input:
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$ p vis.c
$ grep ’‘#define’ *.[ch] | p
$

This program is best written in C because it’s easy in C, and hard other-
wise; the standard tools are not good at mixing the input from a file or pipe
with terminal input.

The basic, no-frills design is to print the input in small chunks. A suitable
chunk size is 22 lines: that’s slightly less than the 24-line screen of most video
terminals, and one third of a standard 66-line page. A simple way for p to
prompt the user is to not print the last newline of each 22-line chunk. The
cursor will thus pause at the right end of the line rather than at the left mar-
gin. When the user presses RETURN, that will supply the missing newline and
thus cause the next line to appear in the proper place. If the user types ctl-d or
q at the end of a screen, p will exit.

We will take no special action for long lines. We will also not worry about

multiple files: we’ll merely skip from one to the next without comment. That
way the behavior of

$ p filenames...
will be the same as
$ cat filenames... | p
If filenames are needed, they can be added with a for loop like

$ for i in filenames...

> do

> echo $i:
> cat $i
> done !/ p

Indeed, there are too many features that we can add to this program. It’s
better to make a stripped-down version, then let it evolve as experience dic-
tates. That way, the features are the ones that people really want, not the ones
we thought they would want.

The basic structure of p is the same as vis: the main routine cycles
through the files, calling a routine print that does the work on each.
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/% p: print input in chunks (version 1) */

#include <stdio.h>
#define PAGESIZE 22
char #progname; /# program name for error message x*/

main(argc, argv)
int argc;
char xargv[];

int ij
FILE =»fp, #efopen();

progname = argv[0];
if (argc == 1)
print(stdin, PAGESIZE);
else
for (i 1; 1 < argc; i++) {
fp efopen(argv[i], "r");
print(fp, PAGESIZE);
fclose(£fp);

}
exit(0);
}

The routine efopen encapsulates a very common operation: try to open a
file; if it’s not possible, print an error message and exit. To encourage error
messages that identify the offending (or offended) program, efopen refers to
an external string progname containing the name of the program, which is set
in main.

FILE *efopen(file, mode) /% fopen file, die if can’t %/
char x*file, =xmode;

{
FILE #fp, *fopen();
extern char #progname;

if ((fp = fopen(file, mode)) != NULL)
return fp;
fprintf(stderr, "%s: can’t open file %s mode %s\n",
progname, file, mode);
exit(1);
}

We tried a couple of other designs for efopen before settling on this. One
was to have it return after printing the message, with a null pointer indicating
failure. This gives the caller the option of continuing or exiting. Another
design provided efopen with a third argument specifying whether it should
return after failing to open the file. In almost all of our examples, however,
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there’s no point to continuing if a file can’t be accessed, so the current version
of efopen is best for our use.
The real work of the p command is done in print:

print(fp, pagesize) /% print fp in pagesize chunks */
FILE *fp;
int pagesize;

static int lines = 0; /% number of lines so far */
char buf[BUFSIZ];

while (fgets(buf, sizeof buf, fp) != NULL)

if (++lines < pagesize)
fputs(buf, stdout);

else {
buf[strlen(buf)-1] = ‘\0’;
fputs(buf, stdout);
fflush(stdout);
ttyin();
lines = 0;

}

We used BUFSIZ, which is defined in <stdio.h>, as the size of the input
buffer. fgets(buf,size,fp) fetches the next line of input from fp, up to
and including a newline, into buf, and adds a terminating \0; at most size-1
characters are copied. It returns NULL at end of file. (fgets could be better
designed: it returns buf instead of a character count; furthermore it provides
no warning if the input line was too long. No characters are lost, but you have
to look at buf to see what really happened.)

The function strlen returns the length of a string; we use that to knock
the trailing newline off the last input line. fputs(buf,fp) writes the string
buf on file £p. The call to ££1ush at the end of the page forces out any buf-
fered output.

The task of reading the response from the user after each page has been
printed is delegated to a routine called ttyin. ttyin can’t read the standard
input, since p must work even when its input comes from a file or pipe. To
handle this, the program opens the file /dev/tty, which is the user’s terminal
regardless of any redirection of standard input. We wrote ttyin to return the
first character of the response, but don’t use that feature here.
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ttyin() /% process response from /dev/tty (version 1) =/

{
char buf[BUFSIZ];
FILE xefopen();
static FILE #tty = NULL;
if (tty == NULL)
tty = efopen("/dev/tty", "r");
if (fgets(buf, BUFSIZ, tty) == NULL ii buf[0] == ‘q’)
exit(0);
else /% ordinary line x/
return bufl0];
}

The file pointer devtty is declared static so that it retains its value from
one call of ttyin to the next; the file /dev/tty is opened on the first call
only.

There are obviously extra features that could be added to p without much
work, but it is worth noting that our first version of this program did just what
is described here: print 22 lines and wait. It was a long time before other
things were added, and to this day only a few people use the extra features.

One easy extra is to make the number of lines per page a variable
pagesize that can be set from the command line:

$ p-n

prints in n-line chunks. This requires only adding some familiar code at the
beginning of main:

/+ p: print input in chunks (version 2) %/
int i, pagesize = PAGESIZE;

progname = argv[0];

if (argec > 1 && argv[1][0] == "-") {
pagesize = atoi(&argv[11[1]1);
argc--;
argv++;

}

The function atoi converts a character string to an integer. (See atoi(3).)
Another addition to p is the ability to escape temporarily at the end of each
page to do some other command. By analogy to ed and many other programs,
if the user types a line that begins with an exclamation mark, the rest of that
line is taken to be a command, and is passed to a shell for execution. This
feature is also trivial, since there is a function called system(3) to do the
work, but read the caveat below. The modified version of ttyin follows:
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ttyin() /* process response from /dev/tty (version 2) %/

{
char buf[BUFSIZ];
FILE xefopen();
static FILE xtty = NULL;
if (tty == NULL)
tty = efopen("/dev/tty", "r");
for (5;) {
if (fgets(buf,BUFSIZ,tty) == NULL {{ buf[0] == ‘q’
exit(0);
else if (buf[0] == “!’) {
system(buf+1); /% BUG here */
printf("I\n");
}
else /% ordinary line x/
return buf[0];
}
}

Unfortunately, this version of ttyin has a subtle, pernicious bug. The com-
mand run by system inherits the standard input from p, so if p is reading
from a pipe or a file, the command may interfere with its input:

1

$ cat /etc/passwd | p -1
root:3D.fHR5KoB.3s:0:1:S.User:/:!ed Invoke ed from within p

? ed reads /etc/passwd ...
! ... is confused, and quits

The solution requires knowledge about how UNIX processes are controlled, and
we will present it in Section 7.4. For now, be aware that the standard system
in the library can cause trouble, but that ttyin works correctly if compiled
with the version of system in Chapter 7.

We have now written two programs, vis and p, that might be considered
variants of cat, with some embellishments. So should they all be part of cat,
accessible by optional arguments like -v and -p? The question of whether to
write a new program or to add features to an old one arises repeatedly as peo-
ple have new ideas. We don’t have a definitive answer, but there are some
principles that help to decide.

The main principle is that a program should only do one basic job — if it
does too many things, it gets bigger, slower, harder to maintain, and harder to
use. Indeed, the features often lie unused because people can’t remember the
options anyway.

This suggests that cat and vis should nor be combined. cat just copies
its input, unchanged, while vis transforms it. Merging them makes a pro-
gram that does two different things. It’s almost as clear with cat and p. cat
is meant for fast, efficient copying; p is meant for browsing. And p does
transform its output: every 22nd newline is dropped. Three separate programs
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seems to be the proper design.

Exercise 6-6. Does p act sanely if pagesize is not positive? O

Exercise 6-7. What else could be done to p? Evaluate and implement (if appropriate)
the ability to re-print parts of earlier input. (This is one extra feature that we enjoy.)
Add a facility to permit printing less than a screenful of input after each pause. Add a
facility to scan forward or backward for a line specified by number or content. O
Exercise 6-8. Use the file manipulation capabilities of the exec shell built-in (see
sh(1)) to fix ttyin’s call to system. O

Exercise 6-9. If you forget to specify an input for p, it sits quietly waiting for input
from the terminal. Is it worth detecting this probable error? If so, how? Hint:
isatty(3). O

6.5 An example: pick

The version of pick in Chapter 5 was clearly stretching the capabilities of
the shell. The C version that follows is somewhat different from the one in
Chapter 5. If it has arguments, they are processed as before. But if the single
argument ‘-’ is specified, pick processes its standard input.

Why not just read the standard input if there are no arguments? Consider
the second version of the zap command in Section 5.6:

kill $SIG ‘pick \‘'ps -ag | egrep "$x*"\' | awk ’‘{print $1}’

What happens if the egrep pattern doesn’t match anything? In that case,
pick has no arguments and starts to read its standard input; the zap com-
mand fails in a mystifying way. Requiring an explicit argument is an easy way
to disambiguate such situations, and the ‘-’ convention from cat and other
programs indicates how to specify it.
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/% pick: offer choice on each argument */

#include <stdio.h>
char *progname; /% program name for error message */

main(argc, argv)
int argc;
char xargv([];

int i;
char buf[BUFSIZ];

progname = argv[0];
if (argc == 2 && strcmp(argv[1],"-") == 0) /% pick - */
while (fgets(buf, sizeof buf, stdin) != NULL) {
buf[strlen(buf)-1] = ’\0’; /% drop newline %/
pick(buf);
}
else
for (i = 1; i < argc; i++)
pick(argv[il);
exit(0);

pick(s) /% offer choice of s %/
char =xs;
{
fprintf(stderr, "%s? ", s);
if (ttyin() == ‘y’)
printf("%s\n", s);
}

pick centralizes in one program a facility for interactively selecting argu-
ments. This not only provides a useful service, but also reduces the need for
“interactive’’ options on other commands.

Exercise 6-10. Given pick, is there a need for rm -i? O

6.6 On bugs and debugging

If you’ve ever written a program before, the notion of a bug will be fami-
liar. There’s no good solution to writing bug-free code except to take care to
produce a clean, simple design, to implement it carefully, and to keep it clean
as you modify it.

There are a handful of UNIX tools that will help you to find bugs, though
none is really first-rate. To illustrate them, however, we need a bug, and all
of the programs in this book are perfect. Therefore we’ll create a typical bug.
Consider the function pick shown above. Here it is again, this time contain-
ing an error. (No fair looking back at the original.)
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pick(s) /% offer choice of s %/

char =s;
{
fprintf("%s? ", s);
if (ttyin() == ‘y’)
printf("%s\n", s);
}

If we compile and run it, what happens?

$ cc pick.c -o pick

$ pick *.c Try it
Memory fault - core dumped Disaster!
$

“Memory fault” means that your program tried to reference an area of
memory that it was not allowed to. It usually means that a pointer points
somewhere wild. ‘“‘Bus error” is another diagnostic with a similar meaning,
often caused by scanning a non-terminated string.

“Core dumped” means that the kernel saved the state of your executing
program in a file called core in the current directory. You can also force a
program to dump core by typing ctl-\ if it is running in the foreground, or by
the command kill -3 if it is in the background.

There are two programs for poking around in the corpse, adb and sdb.
Like most debuggers, they are arcane, complicated, and indispensable. adb is
in the 7th Edition; sdb is available on more recent versions of the system.
One or the other is sure to be there.

We have space here only for the absolute minimum use of each: printing a
stack trace, that is, the function that was executing when the program died, the
function that called it, and so on. The first function named in the stack trace
is where the program was when it aborted.

To get a stack trace with adb, the command is $C:
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$ adb pick core Invoke adb
$C Stack trace request
~_strout(0175722,011,0,011200)

adjust: 0

fillch: 060542

__doprnt(0177345,0176176,011200)
~fprintf(011200,0177345)

iop: 011200
fmt: 0177345
args: 0
~pick(0177345)
s: 0177345
~main(035,0177234)
argc: 035
argv: 0177234
i: 01
buf: 0
ctl-d Quit

$

This says that main called pick, which called fprintf, which called
_doprnt, which called _strout. Since _doprnt isn’t mentioned anywhere
in pick.c, our troubles must be somewhere in £printf or above. (The lines
after each subroutine in the traceback show the values of local variables. $c
suppresses this information, as does $C itself on some versions of adb.)

Before revealing all, let’s try the same thing with sdb:

$ sdb pick core
Warning: ‘a.out’ not compiled with -g

lseek: address 0xa64 Routine where program died
*t Stack trace request
lseek()

fprintf(6154,2147479154)

pick(2147479154)

main(30,2147478988,2147479112)

*q Quit

$

The information is formatted differently, but there’s a common theme:
fprintf. (The traceback is different because this was run on a different
machine — a VAX-11/750 — which has a different implementation of the stan-
dard I/O library). And sure enough, if we look at the fprintf invocation in
the defective version of pick, it is wrong:

fprintf("%s? ", s);
There’s no stderr, so the format string "%s? " is being used as a FILE

pointer, and of course chaos ensues.
We picked this error because it’s common, a result of oversight rather than
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bad design. It’s also possible to find errors like this, in which a function is
called with the wrong arguments, by using the C verifier 1int(1). lint
examines C programs for potential errors, portability problems, and dubious
constructions. If we run lint on the whole pick.c file, the error is identi-
fied:

$ lint pick.c
fprintf, arg. 1 used inconsistently "11lib-1c"(69) :: "pick.c"(28)

$

In translation, this says that £print£’s first argument is different in the stan-
dard library definition from its use in line 28 of our program. That is a strong
hint about what’s wrong.

lint is a mixed success. It says exactly what’s wrong with this program,
but also produces a lot of irrelevant messages that we’ve elided above, and it
takes some experience to know what to heed and what to ignore. It’s worth
the effort, though, because 1int finds some errors that are almost impossible
for people to see. It’s always worth running 1int after a long stretch of edit-
ing, making sure that you understand each warning that it gives.

6.7 An example: zap

zap, which selectively kills processes, is another program that we presented
as a shell file in Chapter 5. The main problem with that version is speed: it
creates so many processes that it runs slowly, which is especially undesirable
for a program that kills errant processes. Rewriting zap in C will make it fas-
ter. We are not going to do the whole job, however: we will still use ps to
find the process information. This is much easier than digging the information
out of the kernel, and it is also portable. zap opens a pipe with ps on the
input end, and reads from that instead of from a file. The function popen(3)
is analogous to fopen, except that the first argument is a command instead of
a filename. There is also a pclose that we don’t need here.
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/+ zap: 1interactive process killer =/

#include <stdio.h>

#include <signal.h>

char *progname; /% program name for error message */
char *ps = "ps -ag"; /% system dependent %/

main(argc, argv)
int argc;
char =argv([];

{
FILE *fin, #*popen();
char buf[BUFSIZ];
int pid;
progname = argv[0];
if ((fin = popen(ps, "r")) == NULL) {
fprintf(stderr, "%s: can’t run %s\n", progname, ps);
exit(1);
}
fgets(buf, sizeof buf, fin); /+ get header line x/
fprintf(stderr, "%s", buf);
while (fgets(buf, sizeof buf, fin) != NULL)
if (argc == 1 || strindex(buf, argv[1]) >= 0) {
buf[strlen(buf)-1] = “\0’; /% suppress \n */
fprintf(stderr, "%s? ", buf);
if (ttyin() == ‘y’) {
sscanf (buf, "%4d", &pid);
kill(pid, SIGKILL);
}
}
exit(0);
}

We wrote the program to use ps -ag (the option is system dependent), but
unless you're the super-user you can kill only your own processes.

The first call to £gets picks up the header line from ps; it’s an interesting
exercise to deduce what happens if you try to kill the “process’ corresponding
to that header line.

The function sscanf is a member of the scanf(3) family for doing input
format conversion. It converts from a string instead of a file. The system call
kill sends the specified signal to the process; signal SIGKILL, defined in
<signal.h>, can’t be caught or ignored. You may remember from Chapter
5 that its numeric value is 9, but it’s better practice to use the symbolic con-
stants from header files than to sprinkle your programs with magic numbers.

If there are no arguments, zap presents each line of the ps output for pos-
sible selection. If there is an argument, then zap offers only ps output lines
that match it. The function strindex(s1,s2) tests whether the argument
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matches any part of a line of ps output, using strncmp (see Table 6.2).
strindex returns the position in s1 where s2 occurs, or -1 if it does not.

strindex(s, t) /% return index of t in s, -1 if none %/
char xs, *t;
{

int i, n;

n = strlen(t);

for (i = 0; s[i] !I= ’"\0’; i++)
if (strncmp(s+i, t, n) == 0)
return i;

return -1;

}

Table 6.4 summarizes the commonly-used functions from the standard 1/0
library.

Exercise 6-11. Modify zap so that any number of arguments can be supplied. As writ-
ten, zap will normally echo the line corresponding to itself as one of the choices.
Should it? If not, modify the program accordingly. Hint: getpid(2). O

Exercise 6-12. Build an fgrep(l) around strindex. Compare running times for
complicated seaiches, say ten words in a document. Why does fgrep run faster? O

6.8 An interactive file comparison program: idiff

A common problem is to have two versions of a file, somewhat different,
each containing part of a desired file; this often results when changes are made
independently by two different people. diff will tell you how the files differ,
but it’s of no direct help if you want to select some parts of the first file and
some of the second.

In this section, we will write a program idiff (‘‘interactive diff”) that
presents each chunk of diff output and offers the user the option of choosing
the “from” part, choosing the “to” part, or editing the parts. idiff produces

the selected pieces in the proper order, in a file called idiff.out. That is,
given these two files:

filel : file2:

This is This is

a test not a test
of of

your our

skill ability.

and comprehension.

diff produces
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fp=fopen(s,mode)

c:getc ( fp)
putC(cafp)
ungetc(c,fp)

scanf (fmt,al,...)

fscanf(fp,...)
sscanf(s,...)
printf(fmt,al,...)
fprintf(£fp,...)
sprintf(s,...)
fgets(s,n,fp)

fputs(s,fp)
fflush(£fp)
fclose(£fp)
fp=popen(s,mode)
pclose(fp)
system(s)

Table 6.4: Useful Standard I/O Functions

open file s; mode "r", "w", "a" for read, write,
append (returns NULL for error)

get character; getchar() is getc(stdin)

put character; putchar(c) is putc(c,stdout)

put character back on input file £p; at most 1 char
can be pushed back at one time

read characters from stdin into a1,... according
to fmt. Each aj must be a pointer.
Returns EOF or number of fields converted.

read from file £p

read from string s

format a1,... according to fmt, print on stdout

print ... on file £p

print ... into string s

read at most n characters into s from £p.
Returns NULL at end of file

print string s on file £p

flush any buffered output on file £p

close file fp

open pipe to command s. See fopen.

close pipe fp

run command s and wait for completion

$ diff filel file2

2c2

< a test

> not a test
4,6c4,5

< your

< skill

< and comprehension.

> our
> ability.
$

A dialog with idiff might look like this:
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$ idiff file1 file2
2c2 The first difference
< a test

> not a test

? > User chooses second (>) version
4,6c4,5 The second difference

< your

< skill

< and comprehension.

> our

> ability.

? < User chooses first (<) version
idiff output in file idiff.out

$ cat idiff.out Output put in this file
This is

not a test

of

your

skill

and comprehension.

$

CHAPTER 6

If the response e is given instead of < or >, idiff invokes ed with the two
groups of lines already read in. If the second response had been e, the editor

buffer would look like this:

your
skill

and comprehension.
our

ability.

Whatever is written back into the file by ed is what goes into the final output.
Finally, any command can be executed from within idiff by escaping with

temd.

Technically, the hardest part of the job is diff, and that has already been
done for us. So the real job of idiff is parsing diff’s output, and opening,
closing, reading and writing the proper files at the right time. The main rou-

tine of idiff sets up the files and runs the diff process:
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/% idiff: interactive diff x/

#include <stdio.h>
#include <ctype.h>
char *progname;
#define HUGE 10000 /% large number of lines */

main(argc, argv)
int argc;
char xargv[];

{
FILE *fin, *fout, *£f1, *f2, xefopen();
char buf[BUFSIZ], *mktemp();
char #*diffout = "idiff.XXXXXX";
progname = argv[O0];
if (arge != 3) {
fprintf(stderr, "Usage: idiff file1 file2\n");
exit(1);
}
f1 = efopen(argv[1], "r");
f2 = efopen(argv([2], "r");
fout = efopen("idiff.out", "w");
mktemp(diffout);
sprintf(buf,"diff %s %s >%s",argv[1],argv[2],diffout);
system(buf) ;
fin = efopen(diffout, "r"):
idiff(£f1, £2, fin, fout);
unlink(diffout);
printf("%s output in file idiff.out\n", progname);
exit(0);
}

The function mktemp(3) creates a file whose name is guaranteed to be dif-
ferent from any existing file. mktemp overwrites its argument: the six X’s are
replaced by the process-id of the idiff process and a letter. The system call
unlink(2) removes the named file from the file system.

The job of looping through the changes reported by diff is handled by a
function called idiff. The basic idea is simple enough: print a chunk of
diff output, skip over the unwanted data in one file, then copy the desired
version from the other. There is a lot of tedious detail, so the code is bigger
than we’d like, but it’s easy enough to understand in pieces.
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idiff(£f1, £2, fin, fout) /% process diffs x/
FILE *f1, »£f2, »xfin, *fout;

{
char s*tempfile = "idiff.XXXXXX";
char buf[BUFSIZ], buf2[BUFSIZ], #mktemp();
FILE *ft, #efopen();
int cmd, n, fromi, toi, from2, to2, nf1, nf2;

mktemp(tempfile);
nfi1 = nf2 = 0;
while (fgets(buf, sizeof buf, fin) != NULL) {
parse(buf, &fromi, &tol, &cmd, &from2, &to2);
n = tol-from1 + to2-from2 + 1; /% #lines from diff »/

if (cmd == ‘c¢’)
n += 23

else if (cmd == ‘a’)
from1++;

else if (cmd == ’4d’)
from2++;

printf("%s", buf);

while (n-- > 0) {
fgets(buf, sizeof buf, fin);
printf("%s", buf);

printf("? ");

fflush(stdout);

fgets(buf, sizeof buf, stdin);

switch (buf[0]) {

case ‘>’:
nskip(f1, to1-nf1);
ncopy(£f2, to2-nf2, fout);
break;

case ‘<’:
nskip(£f2, to2-nf2);
ncopy(f1, to1-nf1, fout);
break;

case ‘e’:
ncopy(f1, from1-1-nf1, fout);
nskip(f2, from2-1-nf2);
ft = efopen(tempfile, "w");
ncopy(f1, to1+1-from1, ft);
fprintf(ft, "---\n");
ncopy(£2, to2+1-from2, ft);
fclose(ft);
sprintf(buf2, "ed %s", tempfile);
system(buf2);
ft = efopen(tempfile, "r");
ncopy(ft, HUGE, fout);
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fclose(ft);
break;
case ‘!’:
system(buf+1);
printf("!\n");
break;
default:
printf("< or > or e or !\n");
break;
}
} while (buf[0]!=’<’ && buf[0]!=’>’ && buf[0]!='e’);
nf1 = to1;
nf2 = to2;
}
ncopy(£f1, HUGE, fout); /% can fail on very long files */
unlink(tempfile);
}

The function parse does the mundane but tricky job of parsing the lines
produced by diff, extracting the four line numbers and the command (one of
a, c or d). parse is complicated a bit because diff can produce either one
line number or two on either side of the command letter.

parse(s, pfrom1, ptol, pcmd, pfrom2, pto2)
char *s;
int *pcmd, *pfrom1, *pto1, *pfrom2, x*pto2;
{
#define a2i(p) while (isdigit(#*s)) p = 10*(p) + *s++ - ‘07

*pfrom1 = *pto1 = #*pfrom2 = xpto2 = 0;
a2i(#pfrom1);

if (*S == ',') {
S++;
a2i(*pto1);
} else

*pto1 = xpfrom1;
*pcmd = *S++;
a2i(*pfrom2);

if (#s == ’,’) {
S++;
a2i(#*pto2);
} else

#*pto2 = s*pfrom2;
}
The macro a2i handles our specialized conversion from ASCII to integer in the
four places it occurs.

nskip and ncopy skip over or copy the specified number of lines from a
file:



198 THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 6

nskip(fin, n) /% skip n lines of file fin */

FILE #fin;
{
char buf[BUFSIZ];
while (n-- > 0)
fgets(buf, sizeof buf, fin);
}

ncopy(fin, n, fout) /% copy n lines from fin to fout */
FILE xfin, =fout;

{
char buf[BUFSIZ];
while (n-- > 0) {
if (fgets(buf, sizeof buf, fin) == NULL)
return;
fputs(buf, fout);
}
}

As it stands, idiff doesn’t quit gracefully if it is interrupted, since it
leaves several files lying around in /tmp. In the next chapter, we will show
how to catch interrupts to remove temporary files like those used here.

The crucial observation with both zap and idiff is that most of the hard
work has been done by someone else. These programs merely put a con-
venient interface on another program that computes the right information. It’s
worth watching for opportunities to build on someone else’s labor instead of
doing it yourself — it’s a cheap way to be more productive.

Exercise 6-13. Add the command q to idiff: the response g< will take all the rest of
the ‘<’ choices automatically; g> will take the all the rest of the ‘>’ choices. O

Exercise 6-14. Modify idiff so that any diff arguments are passed on to diff; -b
and -h are likely candidates. Modify idiff so that a different editor can be specified,
as in

$ idiff -e another-editor file1 file2

How do these two modifications interact? O

Exercise 6-15. Change idiff to use popen and pclose instead of a temporary file
for the output of diff. What difference does it make in program speed and complex-
ity? O

Exercise 6-16. diff has the property that if one of its arguments is a directory, it
searches that directory for a file with the same name as the other argument. But if you

try the same thing with idif€£, it fails in a strange way. Explain what happens, then
fix it. O
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6.9 Accessing the environment

It is easy to access shell environment variables from a C program, and this
can sometimes be used to make programs adapt to their environment without
requiring much of their users. For example, suppose that you are using a ter-
minal in which the screen size is bigger than the normal 24 lines. If you want
to use p and take full advantage of your terminal’s capabilities, what choices
are open to you? It’s a bother to have to specify the screen size each time you
use p:

$ p-36 ...
You could always put a shell file in your bin:

$ cat /usr/you/bin/p
exec /usr/bin/p -36 $=
$

A third solution is to modify p to use an environment variable that defines
the properties of your terminal. Suppose that you define the variable
PAGESIZE in your .profile:

PAGESIZE=36
export PAGESIZE

The routine getenv("var") searches the environment for the shell vari-
able var and returns its value as a string of characters, or NULL if the variable
is not defined. Given getenv, it’s easy to modify p. All that is needed is to
add a couple of declarations and a call to getenv to the beginning of the main
routine.

/% p: print input in chunks (version 3) %/
char *p, *getenv();

progname = argv[0];

if ((p=getenv("PAGESIZE")) != NULL)
pagesize = atoi(p);

if (argc > 1 && argv[1][0] == "-*) {
pagesize = atoi(&argv[1]1[1]);
argc--;
argv++;

}

Optional arguments are processed after the environment variable, so any expli-
cit page size will still override an implicit one.

Exercise 6-17. Modify idiff to search the environment for the name of the editor to
be used. Modify 2, 3, etc., to use PAGESIZE. O
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History and bibliographic notes

The standard I/O library was designed by Dennis Ritchie, after Mike Lesk’s
portable 1/O library. The intent of both packages was to provide enough stan-
dard facilities that programs could be moved from UNIX to non-UNIX systems
without change.

Our design of p is based on a program by Henry Spencer.

adb was written by Steve Bourne, sdb by Howard Katseff, and 1int by
Steve Johnson.

idiff is loosely based on a program originally written by Joe Maranzano.
diff itself is by Doug Mcllroy, and is based on an algorithm invented
independently by Harold Stone and by Wayne Hunt and Tom Szymanski. (See
“A fast algorithm for computing longest common subsequences,” by J. W.
Hunt and T. G. Szymanski, CACM, May, 1977.) The diff algorithm is
described in M. D. Mcllroy and J. W. Hunt, ““An algorithm for differential file
comparison,”” Bell Labs Computing Science Technical Report 41, 1976. To
quote Mcllroy, “I had tried at least three completely different algorithms
before the final one. diff is a quintessential case of not settling for mere
competency in a program but revising it until it was right.”



cHAPTER 7. UNIX SYSTEM CALLS

This chapter concentrates on the lowest level of interaction with the UNIX
operating system — the system calls. These are the entries to the kernel.
They are the facilities that the operating system provides; everything else is
built on top of them.

We will cover several major areas. First is the I/O system, the foundation
beneath library routines like fopen and putc. We’ll talk more about the file
system as well, particularly directories and inodes. Next comes a discussion of
processes — how to run programs from within a program. After that we will
talk about signals and interrupts: what happens when you push the DELETE
key, and how to handle that sensibly in a program.

As in Chapter 6, many of our examples are useful programs that were not
part of the 7th Edition. Even if they are not directly helpful to you, you
should learn something from reading them, and they might suggest similar
tools that you could build for your system.

Full details on the system calls are in Section 2 of the UNIX Programmer’s
Manual; this chapter describes the most important parts, but makes no pretense
of completeness.

7.1 Low-level I/O

The lowest level of 1/O is a direct entry into the operating system. Your
program reads or writes files in chunks of any convenient size. The kernel
buffers your data into chunks that match the peripheral devices, and schedules
operations on the devices to optimize their performance over all users.

File descriptors

All input and output is done by reading or writing files, because all peri-
pheral devices, even your terminal, are files in the file system. This means
that a single interface handles all communication between a program and peri-
pheral devices.

In the most general case, before reading or writing a file, it is necessary to
inform the system of your intent to do so, a process called opening the file. If

201
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you are going to write on a file, it may also be necessary to create it. The sys-
tem checks your right to do so (Does the file exist? Do you have permission to
access it?), and if all is well, returns a non-negative integer called a file
descriptor. Whenever 1/O is to be done on the file, the file descriptor is used
instead of the name to identify the file. All information about an open file is
maintained by the system; your program refers to the file only by the file
descriptor. A FILE pointer as discussed in Chapter 6 points to a structure that
contains, among other things, the file descriptor; the macro fileno(£p)
defined in <stdio.h> returns the file descriptor.

There are special arrangements to make terminal input and output con-
venient. When it is started by the shell, a program inherits three open files,
with file descriptors 0, 1, and 2, called the standard input, the standard output,
and the standard error. All of these are by default connected to the terminal,
so if a program only reads file descriptor 0 and writes file descriptors 1 and 2,
it can do I/O without having to open files. If the program opens any other
files, they will have file descriptors 3, 4, etc.

If 1/O is redirected to or from files or pipes, the shell changes the default
assignments for file descriptors 0 and 1 from the terminal to the named files.
Normally file descriptor 2 remains attached to the terminal, so error messages
can go there. Shell incantations such as 2>filename and 2>8&1 will cause
rearrangements of the defaults, but the file assignments are changed by the
shell, not by the program. (The program itself can rearrange these further if it
wishes, but this is rare.)

File I/O — read and write

All input and output is done by two system calls, read and write, which
are accessed from C by functions of the same name. For both, the first argu-
ment is a file descriptor. The second argument is an array of bytes that serves
as the data source or destination. The third argument is the number of bytes
to be transferred.

int fd, n, nread, nwritten;
char buf[SIZE];

nread = read(fd, buf, n);
nwritten = write(fd, buf, n);

Each call returns a count of the number of bytes transferred. On reading, the
number of bytes returned may be less than the number requested, because
fewer than n bytes remained to be read. (When the file is a terminal, read
normally reads only up to the next newline, which is usually less than what
was requested.) A return value of zero implies end of file, and -1 indicates an
error of some sort. For writing, the value returned is the number of bytes
actually written; an error has occurred if this isn’t equal to the number sup-
posed to be written.

While the number of bytes to be read or written is not restricted, the two
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most common values are 1, which means one character at a time (‘“‘unbuf-
fered”’), and the size of a block on a disc, most often 512 or 1024 bytes. (The
parameter BUFSIZ in <stdio.h> has this value.)

To illustrate, here is a program to copy its input to its output. Since the
input and output can be redirected to any file or device, it will actually copy
anything to anything: it’s a bare-bones implementation of cat.

/% cat: minimal version =/
#define SIZE 512 /+ arbitrary */

main()

{
char buf[SIZE];
int nj;

while ((n = read(0, buf, sizeof buf)) > 0)
write(1, buf, n);
exit(0);
}

If the file size is not a multiple of SIZE, some read will return a smaller
number of bytes to be written by write; the next call to read after that will
return zero.

Reading and writing in chunks that match the disc will be most efficient,
but even character-at-a-time I/O is feasible for modest amounts of data,
because the kernel buffers your data; the main cost is the system calls. ed, for
example, uses one-byte reads to retrieve its standard input. We timed this ver-
sion of cat on a file of 54000 bytes, for six values of SIZE:

Time (user+system, sec.)
SIZE PDP-11/70 VAX-11/750

1 271.0 188.8

10 29.9 19.3
100 3.8 2.6
512 1.3 1.0
1024 1.2 0.6
5120 1.0 0.6

The disc block size is 512 bytes on the PDP-11 system and 1024 on the VAX.

It is quite legal for several processes to be accessing the same file at the
same time; indeed, one process can be writing while another is reading. If this
isn’t what you wanted, it can be disconcerting, but it’s sometimes useful. Even
though one call to read returns O and thus signals end of file, if more data is
written on that file, a subsequent read will find more bytes available. This
observation is the basis of a program called readslow, which continues to
read its input, regardless of whether it got an end of file or not. readslow is
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handy for watching the progress of a program:

$ slowprog >temp &
5213 Process-id

$ readslow <temp | grep something

In other words, a slow program produces output in a file; readslow, perhaps
in collaboration with some other program, watches the data accumulate.

Structurally, readslow is identical to cat except that it loops instead of
quitting when it encounters the current end of the input. It has to use low-
level I/O because the standard library routines continue to report EOF after the
first end of file.

/+ readslow: keep reading, waiting for more */

#define SIZE 512 /+ arbitrary =/
main()
{

char buf[SIZE];

int n;

for (53) {

while ((n = read(0, buf, sizeof buf)) > 0)
write(1, buf, n);
sleep(10);

}

The function sleep causes the program to be suspended for the specified
number of seconds; it is described in sleep(3). We don’t want readslow to
bang away at the file continuously looking for more data; that would be too
costly in CPU time. Thus this version of readslow copies its input up to the
end of file, sleeps a while, then tries again. If more data arrives while it is
asleep, it will be read by the next read.

Exercise 7-1. Add a -n argument to readslow so the default sleep time can be
changed to n seconds. Some systems provide an option -f (‘“forever”) for tail that
combines the functions of tail with those of readslow. Comment on this design. O
Exercise 7-2. What happens to readslow if the file being read is truncated? How
would you fix it? Hint: read about £stat in Section 7.3. O

File creation — open, creat, close, unlink

Other than the default standard input, output and error files, you must
explicitly open files in order to read or write them. There are two system calls
for this, open and creat.t

+ Ken Thompson was once asked what he would do differently if he were redesigning the UNIX sys-
tem. His reply: “I'd spell creat with an e.”
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open is rather like fopen in the previous chapter, except that instead of
returning a file pointer, it returns a file descriptor, which is an int.

char *name;
int fd, rwmode;

fd = open(name, rwmode);

As with fopen, the name argument is a character string containing the
filename. The access mode argument is different, however: rwmode is 0 for
read, 1 for write, and 2 to open a file for both reading and writing. open
returns -1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The system call
creat is provided to create new files, or to rewrite old ones.

int perms;
fd = creat(name, perms);

creat returns a file descriptor if it was able to create the file called name,
and -1 if not. If the file does not exist, creat creates it with the permissions
specified by the perms argument. If the file already exists, creat will trun-
cate it to zero length; it is not an error to creat a file that already exists.
(The permissions will not be changed.) Regardless of perms, a created file
is open for writing.

As described in Chapter 2, there are nine bits of protection information
associated with a file, controlling read, write and execute permission, so a
three-digit octal number is convenient for specifying them. For example, 0755
specifies read, write and execute permission for the owner, and read and exe-
cute permission for the group and everyone else. Don’t forget the leading 0,
which is how octal numbers are specified in C.

To illustrate, here is a simplified version of cp. The main simplification is
that our version copies only one file, and does not permit the second argument
to be a directory. Another blemish is that our version does not preserve the
permissions of the source file; we will show how to remedy this later.
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/% cp: midimal version %/

#include <stdio.h>

#define PERMS 0644 /x RW for owner, R for group, others */
char xprogname;

main(argc, argv) /% cp: copy f£1 to f2 %/
int argc;
char *argvl[];
{
int £1, £2, n;
char buf[BUFSIZ];
progname = argv([0];
if (argc != 3)
error("Usage: %s from to", progname);
if ((£1 = open(argv[1]l, 0)) == -1)
error("can’t open %s", argv[1]);
if ((£f2 = creat(argv[2], PERMS)) == -1)
error("can’t create %s", argv[2]);
while ((n = read(f1, buf, BUFSIZ)) > 0)
if (write(£f2, buf, n) != n)
error("write error", (char x) 0);
exit(0);
}

We will discuss error in the next sub-section.

There is a limit (typically about 20; look for NOFILE in <sys/param.h>)
on the number of files that a program may have open simultaneously. Accord-
ingly, any program that intends to process many files must be prepared to re-
use file descriptors. The system call close breaks the connection between a
filename and a file descriptor, freeing the file descriptor for use with some
other file. Termination of a program via exit or return from the main pro-
gram closes all open files.

The system call unlink removes a file from the file system.

Error processing — errno

The system calls discussed in this section, and in fact all system calls, can
incur errors. Usually they indicate an error by returning a value of -1. Some-
times it is nice to know what specific error occurred; for this purpose all system
calls, when appropriate, leave an error number in an external integer called
errno. (The meanings of the various error numbers are listed in the introduc-
tion to Section 2 of the UNIX Programmer’s Manual.) By using errno, your
program can, for example, determine whether an attempt to open a file failed
because it did not exist or because you lacked permission to read it. There is
also an array of character strings sys_errlist indexed by errno that
translates the numbers into a meaningful string. Our version of error uses
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these data structures:

error(s1, s2) /% print error message and die %/
char #*s1, #s2;

{
extern int errno, sys_nerr;
extern char *sys_errlist[], =progname;

if (progname)
fprintf(stderr, "%s: ", progname);
fprintf(stderxr, s1, s2);
if (errno > 0 && errno < sys_nerr)
fprintf(stderr, " (%s)", sys_errlist[errno]l);
fprintf(stderr, "\n");
exit(1);
}

errno is initially zero, and should always be less than sys_nerr. It is not
reset to zero when things go well, however, so you must reset it after each
error if your program intends to continue.

Here is how error messages appear with this version of cp:

$ cp foo bar

cp: can’t open foo (No such file or directory)

$ date >foo; chmod 0 foo Make an unreadable file
$ cp foo bar

cp: can’t open foo (Permission denied)

$

Random access — lseek
File I/O is normally sequential: each read or write takes place in the file
right after the previous one. When necessary, however, a file can be read or
written in an arbitrary order. The system call 1seek provides a way to move
around in a file without actually reading or writing:
int fd, origin;
long offset, pos, lseek();

pos = lseek(fd, offset, origin);

forces the current position in the file whose descriptor is £d to move to posi-
tion offset, which is taken relative to the location specified by origin.
Subsequent reading or writing will begin at that position. origin can be 0, 1,
or 2 to specify that offset is to be measured from the beginning, from the
current position, or from the end of the file. The value returned is the new
absolute position, or -1 for an error. For example, to append to a file, seek to
the end before writing:

lseek(fd, OL, 2);
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To get back to the beginning (‘“‘rewind”’),
lseek(fd, OL, 0);

To determine the current position,
pos = lseek(fd, OL, 1);

Notice the OL argument: the offset is a long integer. (The ‘1’ in lseek
stands for ‘long,” to distinguish it from the 6th Edition seek system call that
used short integers.)

With 1seek, it is possible to treat files more or less like large arrays, at the
price of slower access. For example, the following function reads any number
of bytes from any place in a file.

get(fd, pos, buf, n) /# read n bytes from position pos #/
int fd, n;
long pos;
char »buf;

{
if (lseek(fd, pos, 0) == -1) /% get to pos x/
return -1;
else
return read(fd, buf, n);
}

Exercise 7-3. Modify readslow to handle a filename argument if one is present. Add
the option -e:

$ readslow -e

causes readslow to seek to the end of the input before beginning to read. What does
1lseek do on a pipe? O

Exercise 7-4. Rewrite efopen from Chapter 6 to call error. O

7.2 File system: directories

The next topic is how to walk through the directory hierarchy. This doesn’t
actually use any new system calls, just some old ones in a new context. We
will illustrate by writing a function called spname that tries to cope with
misspelled filenames. The function

n = spname(name, newname) ;

searches for a file with a name “‘close enough” to name. If one is found, it is
copied into newname. The value n returned by spname is -1 if nothing close
enough was found, 0 if there was an exact match, and 1 if a correction was
made.

spname is a convenient addition to the p command: if you try to print a
file but misspell the name, p can ask if you really meant something else:
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$ p /urs/srx/ccmd/p/spnam.c Horribly botched name
"/usr/src/cmd/p/spname.c"? y Suggested correction accepted
/% spname: return correctly spelled filename */

As we will write it, spname will try to correct, in each component of the
filename, mismatches in which a single letter has been dropped or added, or a
single letter is wrong, or a pair of letters exchanged; all of these are illustrated
above. This is a boon for sloppy typists.

Before writing the code, a short review of file system structure is in order.
A directory is a file containing a list of file names and an indication of where
they are located. The ‘“location” is actually an index into another table called
the inode table. The inode for a file is where all information about the file
except its name is kept. A directory entry thus consists of only two items, an
inode number and the file name. The precise specification can be found in the
file <sys/dir.h>:

$ cat /usr/include/sys/dir.h
#define DIRSIZ 14 /% max length of file name */

struct direct /% structure of directory entry x/

{

ino_t d_ino; /% inode number x/

char d_name[DIRSIZ]; /% file name */
}s
$

The “type” ino_t is a typedef describing the index into the inode table.
It happens to be unsigned short on PDP-11 and VAX versions of the sys-
tem, but this is definitely not the sort of information to embed in a program: it
might be different on a different machine. Hence the typedef. A complete
set of “system” types is found in <sys/types.h>, which must be included
before <sys/dir.h>.

The operation of spname is straightforward enough, although there are a
lot of boundary conditions to get right. Suppose the file name is /dIl/d2/f.
The basic idea is to peel off the first component (/), then search that directory
for a name close to the next component (d/), then search that directory for
something near d2, and so on, until a match has been found for each com-
ponent. If at any stage there isn’t a plausible candidate in the directory, the
search is abandoned.

We have divided the job into three functions. spname itself isolates the
components of the path and builds them into a ‘“‘best match so far” filename.
It calls mindist, which searches a given directory for the file that is closest to
the current guess, using a third function, spdist, to compute the distance
between two names.
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/% spname: return correctly spelled filename */

* spname(oldname, newname) char *oldname, *newname;
# returns -1 if no reasonable match to oldname,

* 0 if exact match,

* 1 if corrected.

* stores corrected name in newname.

#include <sys/types.h>
#include <sys/dir.h>

spname (oldname, newname)
char x*oldname, *newname;

char *p, guess[DIRSIZ+1], best[DIRSIZ+1];
char *new = newname, *0ld = oldname;

for (;3) {
while (%*0ld == ’/’) /% skip slashes */
*new++ = *0ld++;
*new = ‘\0’;
if (#0ld == ’\0’) /% exact or corrected =/
return strcmp(oldname,newname) != 0;
P = guess; /* copy next component into guess */
for ( ; %old != “/’ && *0ld != ’‘\0’; old++)
if (p < guess+DIRSIZ)
*p++ = x0l1d;
*p = ‘N0’ ;
if (mindist(newname, guess, best) >= 3)
return -1; /* hopeless */
for (p = best; #*new = *p++; ) /% add to end »/
new++; /% of newname */
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mindist(dir, guess, best) /% search dir for guess */
char *dir, #guess, x*best;

{
/% set best, return distance 0..3 */
int d, nd, fd;
struct {
ino_t ino;
char mname[DIRSIZ+1]; /% 1 more than in dir.h =/
} nbuf;
nbuf .name[DIRSIZ] = ’“\0’; /% +1 for terminal “\0’ %/
if (dir[0] == “\0’) /% current directory */
dir = u.u;
d = 3; /% minimum distance */
if ((fd=open(dir, 0)) == -1)
return d;
while (read(fd, (char *) &nbuf,sizeof(struct direct)) > 0)
if (nbuf.ino) {
nd = spdist(nbuf.name, guess);
if (nd <= 4 && nd != 3) {
strcpy(best, nbuf.name);
d = nd;
if (d == 0) /+* exact match */
break;
}
}
close(£fd);
return d;
}

)

If the directory name given to mindist is empty, ‘.’ is searched. mindist
reads one directory entry at a time. Notice that the buffer for read is a struc-
ture, not an array of characters. We use sizeof to compute the number of
bytes, and coerce the address to a character pointer.

If a slot in a directory is not currently in use (because a file has been
removed), then the inode entry is zero, and this position is skipped. The dis-
tance test is

if (nd <=4 ...)
instead of
if (nd <4 ...)

3

so that any other single character is a better match than
the first entry in a directory.

.’, which is always
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/% spdist: return distance between two names #*/

* very rough spelling metric:

* 0 if the strings are identical

# 1 if two chars are transposed

* 2 if one char wrong, added or deleted
# 3 otherwise

#define EQ(s,t) (strcmp(s,t) == 0)

spdist(s, t)
char s, =xt;

{
while (#s++ == »t)
if (*t++ == ’\0’)
return 0; /# exact match »*/
if (#--s) {
if (#t) {
if (s[1] && t[1] && =#s == t[1]
&8& #t == s[1] && EQ(s+2, t+2))
return 1; /% transposition #/
if (EQ(s+1, t+1))
return 2; /% 1 char mismatch =/
}
if (EQ(s+1, t))
return 2; /% extra character =/
}
if (#*t && EQ(s, t+1))
return 2; /% missing character =/
return 3;
}

Once we have spname, integrating spelling correction into p is easy:
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/+ p: print input in chunks (version 4) */

#include <stdio.h>
#define PAGESIZE 22
char *progname; /% program name for error message */

main(argc, argv)
int argc;
char xargv[];

{
FILE *fp, #efopen();
int i, pagesize = PAGESIZE;
char #p, #getenv(), buf[BUFSIZ];
progname = argv[0];
if ((p=getenv("PAGESIZE")) != NULL)
pagesize = atoi(p);
if (argc > 1 && argv[1][0] == ’"-’) {
pagesize = atoi(&argv[11[1]);
argc--;
argv++;
}
if (argc == 1)
print(stdin, pagesize);
else
for (i = 1; i < argc; i++)
switch (spname(argv[il, buf)) {
case -1: /* no match possible */
fp = efopen(argv[i], "r");
break;
case 1: /% corrected */
fprintf(stderr, "\"%s\"? ", buf);
if (ttyin() == ‘n’)
break;
argv[i] = buf;
/* fall through... %/
case 0: /% exact match */
fp = efopen(argv[i], "r");
print(fp, pagesize);
fclose(£fp);
}
exit(0);
}

Spelling correction is not something to be blindly applied to every program
that uses filenames. It works well with p because p is interactive, but it’s not
suitable for programs that might not be interactive.

Exercise 7-5. How much can you improve on the heuristic for selecting the best match
in spname? For example, it is foolish to treat a regular file as if it were a directory;
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this can happen with the current version. O

Exercise 7-6. The name tx matches whichever of tc happens to come last in the direc-
tory, for any single character c. Can you invent a better distance measure? Implement
it and see how well it works with real users. O

Exercise 7-7. mindist reads the directory one entry at a time. Does p run perceptibly
faster if directory reading is done in bigger chunks? O

Exercise 7-8. Modify spname to return a name that is a prefix of the desired name if
no closer match can be found. How should ties be broken if there are several names
that all match the prefix? O

Exercise 7-9. What other programs could profit from spname? Design a standalone
program that would apply correction to its arguments before passing them along to
another program, as in

$ fix prog filenames...

Can you write a version of cd that uses spname? How would you install it? O

7.3 File system: inodes

In this section we will discuss system calls that deal with the file system and
in particular with the information about files, such as size, dates, permissions,
and so on. These system calls allow you to get at all the information we talked
about in Chapter 2.

Let’s dig into the inode itself. Part of the inode is described by a structure
called stat, defined in <sys/stat.h>:

struct stat /% structure returned by stat */

{

dev_t st_dev; /% device of inode */

ino_t st_ino; /% inode number =*/

short st_mode; /% mode bits */

short st_nlink; /+ number of links to file x/

short st_uid; /% owner’s userid =/

short st_gid; /% owner’s group id =/

dev_t st_rdev; /+ for special files x/

off_t st_size; /% file size in characters */

time_t st_atime; /% time file last read */

time_t st_mtime; /% time file last written or created #/

time_t st_ctime; /% time file or inode last changed */
}s

Most of the fields are explained by the comments. Types like dev_t and
ino_t are defined in <sys/types.h>, as discussed above. The st_mode
entry contains a set of flags describing the file; for convenience, the flag defini-
tions are also part of the file <sys/stat.h>:
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#define S_IFMT 0170000 /% type of file %/

#define S_IFDIR 0040000 /% directory =/

#define S_IFCHR 0020000 /* character special =/

#define S_IFBLK 0060000 /* block special x/

#define S_IFREG 0100000 /* regular #*/

#define S_ISUID 0004000 /* set user id on execution %/

#define S_ISGID 0002000 /% set group id on execution */
#define S_ISVTX 0001000 /+ save swapped text even after use %/
#define S_IREAD 0000400 /% read permission, owner #*/

#define S_IWRITE 0000200 /% write permission, owner #*/

#define S_IEXEC 0000100 /+* execute/search permission, owner #/

The inode for a file is accessed by a pair of system calls named stat and
fstat. stat takes a filename and returns inode information for that file (or
-1 if there is an error). fstat does the same from a file descriptor for an
open file (not from a FILE pointer). That is,

char #*name;
int £d4;
struct stat stbuf;

stat(name, &stbuf);
fstat(£fd, &stbuf);

fills the structure stbuf with the inode information for the file name or file
descriptor £d.

With all these facts in hand, we can start to write some useful code. Let us
begin with a C version of checkmail, a program that watches your mailbox.
If the file grows larger, checkmail prints ‘“You have mail” and rings the
bell. (If the file gets shorter, that is presumably because you have just read
and deleted some mail, and no message is wanted.) This is entirely adequate
as a first step; you can get fancier once this works.
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/% checkmail: watch user’s mailbox */

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

char *progname;

char #maildir = "/usr/spool/mail"; /* system dependent */

main(argc, argv)
int argc;
char =argv([];

{
struct stat buf;
char #name, *getlogin();
int lastsize = 0;
progname = argv[0];
if ((name = getlogin()) == NULL)
error("can’t get login name", (char *) 0);
if (chdir(maildir) == -1)
error("can’t cd to %s", maildir);
for (;;) {
if (stat(name, &buf) == -1) /% no mailbox %/
buf.st_size = 0;
if (buf.st_size > lastsize)
fprintf(stderr, "\nYou have mail\007\n");
lastsize = buf.st_size;
sleep(60);
}
}

The function getlogin(3) returns your login name, or NULL if it can’t.
checkmail changes to the mail directory with the system call chdir, so that
the subsequent stat calls will not have to search each directory from the root
to the mail directory. You might have to change maildir to be correct on
your system. We wrote checkmail to keep trying even if there is no mail-
box, since most versions of mail remove the mailbox if it’s empty.

We wrote this program in Chapter 5 in part to illustrate shell loops. That
version created several processes every time it looked at the mailbox, so it
might be more of a system load than you want. The C version is a single pro-
cess that does a stat on the file every minute. How much does it cost to have
checkmail running in the background all the time? We measured it at well
under one second per hour, which is low enough that it hardly matters.

sv: An illustration of error handling

We are next going to write a program called sv, similar to cp, that will
copy a set of files to a directory, but change each target file only if it does not
exist or is older than the source. ‘“sv’’ stands for ‘‘save’’; the idea is that sv
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will not overwrite something that appears to be more up to date. sv uses more
of the information in the inode than checkmail does.
The design we will use for sv is this:

$ sv filel1 file2 ... dir

copies file1 to dir/file1, file2 to dir/file2, etc., except that when a
target file is newer than its source file, no copy is made and a warning is
printed. To avoid making multiple copies of linked files, sv does not allow /’s
in any of the source filenames.

/% sv: save new files #*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/dir.h>
#include <sys/stat.h>
char #*progname;

main(argc, argv)
int argc;
char #argv([];

{
int i;
struct stat stbuf;
char #dir = argv[argc-1];
progname = argv[0];
if (argc <= 2)
error("Usage: %s files... dir", progname);
if (stat(dir, &stbuf) == -1)
error("can’t access directory %s", dir);
if ((stbuf.st_mode & S_IFMT) != S_IFDIR)
error("%s is not a directory", dir);
for (i = 1; i < argc-1; i++)
sv(argv[i], dir);
exit(0);
}

The times in the inode are in seconds-since-long-ago (0:00 GMT, January 1,
1970), so older files have smaller values in their st_mtime field.
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sv(file, dir) /+ save file in dir =/
char #file, =dir;
{
struct stat sti, sto;
int fin, fout, nj;
char target[BUFSIZ], buf[BUFSIZ], #index();

sprintf (target, "%s/%s", dir, file);
if (index(file, ’/’) != NULL) /# strchr() in some systems %/
error("won’t handle /’s in %s", file);
if (stat(file, &sti) == -1)
error("can’t stat %s", file);
if (stat(target, &sto) == -1) /+ target not present %/
sto.st_mtime = 0; /% so make it look old =/
if (sti.st_mtime < sto.st_mtime) /+ target is newer x/
fprintf (stderr, "%s: %s not copied\n",
progname, file);
else if ((fin = open(file, 0)) == -1)
error("can’t open file %s", file);
else if ((fout = creat(target, sti.st_mode)) == -1)
error("can’t create %s", target);
else
while ((n = read(fin, buf, sizeof buf)) > 0)
if (write(fout, buf, n) != n)
error("error writing %s", target);
close(fin);
close(fout);

}

We used creat instead of the standard I/O functions so that sv can preserve
the mode of the input file. (Note that index and strchr are different names
for the same routine; check your manual under string(3) to see which name
your system uses.)

Although the sv program is rather specialized, it does indicate some impor-
tant ideas. Many programs are not ‘“‘system programs’ but may still use infor-
mation maintained by the operating system and accessed through system calls.
For such programs, it is crucial that the representation of the information
appear only in standard header files like <stat.h> and <dir.h>, and that
programs include those files instead of embedding the actual declarations in
themselves. Such code is much more likely to be portable from one system to
another.

It is also worth noting that at least two thirds of the code in sv is error
checking. In the early stages of writing a program, it’s tempting to skimp on
error handling, since it is a diversion from the main task. And once the pro-
gram “‘works,” it’s hard to be enthusiastic about going back to put in the
checks that convert a private program into one that works regardless of what
happens.
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sv isn’t proof against all possible disasters — it doesn’t deal with interrupts
at awkward times, for instance — but it’s more careful than most programs.
To focus on just one point for a moment, consider the final write statement.
It is rare that a write fails, so many programs ignore the possibility. But
discs run out of space; users exceed quotas, communications lines break. All
of these can cause write errors, and you are a lot better off if you hear about
them than if the program silently pretends that all is well.

The moral is that error checking is tedious but important. We have been
cavalier in most of the programs in this book because of space limitations and
to focus on more interesting topics. But for real, production programs, you
can’t afford to ignore errors.

Exercise 7-10. Modify checkmail to identify the sender of the mail as part of the
‘“You have mail” message. Hint: sscanf, 1seek. O

Exercise 7-11. Modify checkmail so that it does not change to the mail directory
before it enters its loop. Does this have a measurable effect on its performance?
(Harder) Can you write a version of checkmail that only needs one process to notify
all users? O

Exercise 7-12. Write a program watchfile that monitors a file and prints the file
from the beginning each time it changes. When would you use it? O

Exercise 7-13. sv is quite rigid in its error handling. Modify it to continue even if it
can’t process some file. O

Exercise 7-14. Make sv recursive: if one of the source files is a directory, that direc-
tory and its files are processed in the same manner. Make cp recursive. Discuss
whether cp and sv ought to be the same program, so that cp -v doesn’t do the copy if
the target is newer. O

Exercise 7-15. Write the program random:

$ random filename

produces one line chosen at random from the file. Given a file people of names,
random can be used in a program called scapegoat, which is valuable for allocating
blame:

$ cat scapegoat

echo "It’s all ‘random people‘'’s fault!"
$ scapegoat

It’s all Ken’s fault!

$

Make sure that random is fair regardless of the distribution of line lengths. O

Exercise 7-16. There’s other information in the inode as well, in particular, disc
addresses where the file blocks are located. Examine the file <sys/ino.h>, then write
a program icat that will read files specified by inode number and disc device. (It will
work only if the disc in question is readable, of course.) Under what circumstances is
icat useful? O
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7.4 Processes

This section describes how to execute one program from within another.
The easiest way is with the standard library routine system, mentioned but
censured in Chapter 6. system takes one argument, a command line exactly
as typed at the terminal (except for the newline at the end) and executes it in a
sub-shell. If the command line has to be built from pieces, the in-memory for-
matting capabilities of sprintf may be useful. At the end of this section we
will show a safer version of system for use by interactive programs, but first
we must examine the pieces from which it is built.

Low-level process creation — execlp and execvp

The most basic operation is to execute another program without returning,
by using the system call execlp. For example, to print the date as the last
action of a running program, use

execlp("date”, "date", (char *) 0);

The first argument to execlp is the filename of the command; execlp
extracts the search path (i.e., $PATH) from your environment and does the
same search as the shell does. The second and subsequent arguments are the
command name and the arguments for the command; these become the argv
array for the new program. The end of the list is marked by a 0 argument.
(Read exec(2) for insight on the design of execlp.)

The execlp call overlays the existing program with the new one, runs that,
then exits. The original program gets control back only when there is an error,
for example if the file can’t be found or is not executable:

execlp("date", "date", (char ) 0);
fprintf(stderr, "Couldn’t execute ‘date’\n");
exit(1);

A variant of execlp called execvp is useful when you don’t know in
advance how many arguments there are going to be. The call is

execvp(filename, argp);

where argp is an array of pointers to the arguments (such as argv); the last
pointer in the array must be NULL so execvp can tell where the list ends. As
with execlp, filename is the file in which the program is found, and argp
is the argv array for the new program; argp[ 0] is the program name.

Neither of these routines provides expansion of metacharacters like <, >, *,
quotes, etc., in the argument list. If you want these, use execlp to invoke
the shell /bin/sh, which then does all the work. Construct a string
commandline that contains the complete command as it would have been
typed at the terminal, then say

execlp("/bin/sh", "sh", "-c¢", commandline, (char ) 0);
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The argument -c says to treat the next argument as the whole command line,
not a single argument.

As an illustration of exec, consider the program waitfile. The com-
mand

$ waitfile filename [ command ]

periodically checks the file named. If it is unchanged since last time, the com-
mand is executed. If no command is specified, the file is copied to the standard
output. We use waitfile to monitor the progress of troff, as in

$ waitfile troff.out echo troff done &

The implementation of waitfile uses fstat to extract the time when the
file was last changed.

/% waitfile: wait until file stops changing */
#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

char *progname;

main(argc, argv)
int argc;
char =argv[];

int fd;
struct stat stbuf;
time_t old_time = 0;

progname = argv[0];
if (argc < 2)
error("Usage: %s filename [cmd]", progname);
if ((£f4 = open(argv[1], 0)) == -1)
error("can’t open %s", argv[1]);
fstat(fd, &stbuf);

while (stbuf.st_mtime != old_time) {
old_time = stbuf.st_mtime;
sleep(60);
fstat(fd, &stbuf);

}

if (argc == 2) { /% copy file x/
execlp("cat", "cat", argv[1], (char *) 0);
error("can’t execute cat %s", argv[1]);

} else { /% run process */
execvp(argv[2], &argv[2]);
error("can’t execute %s", argv[2]);

}

exit(0);
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This illustrates both execlp and execvp.

We picked this design because it’s useful, but other variations are plausible.
For example, waitfile could simply return after the file has stopped chang-
ing.

Exercise 7-17. Modify watchfile (Exercise 7-12) so it has the same property as

waitfile: if there is no command, it copies the file; otherwise it does the command.
Could watchfile and waitfile share source code? Hint: argv[0]. O

Control of processes — fork and wait

The next step is to regain control after running a program with execlp or
execvp. Since these routines simply overlay the new program on the old one,
to save the old one requires that it first be split into two copies; one of these
can be overlaid, while the other waits for the new, overlaying program to fin-
ish. The splitting is done by a system call named fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only
difference between the two is the value returned by fork, the process-id. In
one of these processes (the child), proc_id is zero. In the other (the parent),
proc_id is non-zero; it is the process-id of the child. Thus the basic way to
call, and return from, another program is

if (fork() == 0)
execlp("/bin/sh", "sh", "-c¢", commandline, (char =) 0);

And in fact, except for handling errors, this is sufficient. The fork makes
two copies of the program. In the child, the value returned by fork is zero,
so it calls execlp, which does the commandline and then dies. In the
parent, fork returns non-zero so it skips the execlp. (If there is any error,
fork returns -1.)

More often, the parent waits for the child to terminate before continuing
itself. This is done with the system call wait:

int status;

if (fork() == 0)
execlp(...); /% child =/
wait(&status); /+ parent %/

This still doesn’t handle any abnormal conditions, such as a failure of the
execlp or fork, or the possibility that there might be more than one child
running simultaneously. (wait returns the process-id of the terminated child,
if you want to check it against the value returned by fork.) Finally, this frag-
ment doesn’t deal with any funny behavior on the part of the child. Still, these
three lines are the heart of the standard system function.

The status returned by wait encodes in its low-order eight bits the
system’s idea of the child’s exit status; it is O for normal termination and non-
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zero to indicate various kinds of problems. The next higher eight bits are
taken from the argument of the call to exit or return from main that caused
termination of the child process.

When a program is called by the shell, the three file descriptors 0, 1, and 2
are set up pointing at the right files, and all other file descriptors are available
for use. When this program calls another one, correct etiquette suggests mak-
ing sure the same conditions hold. Neither fork nor exec calls affect open
files in any way; both parent and child have the same open files. If the parent
is buffering output that must come out before output from the child, the parent
must flush its buffers before the execlp. Conversely, if the parent buffers an
input stream, the child will lose any information that has been read by the
parent. Output can be flushed, but input cannot be put back. Both of these
considerations arise if the input or output is being done with the standard 1/0
library discussed in Chapter 6, since it normally buffers both input and output.

It is the inheritance of file descriptors across an execlp that breaks
system: if the calling program does not have its standard input and output
connected to the terminal, neither will the command called by system. This
may be what is wanted; in an ed script, for example, the input for a command
started with an exclamation mark ! should probably come from the script.
Even then ed must read its input one character at a time to avoid input buffer-
ing problems.

For interactive programs like p, however, system should reconnect stan-
dard input and output to the terminal. One way is to connect them to
/dev/tty.

The system call dup(£d) duplicates the file descriptor £4 on the lowest-
numbered unallocated file descriptor, returning a new descriptor that refers to
the same open file. This code connects the standard input of a program to a
file:

int £4;

fd = open("file", 0);
close(0);

dup(£d);

close(£fd);

The close(0) deallocates file descriptor 0, the standard input, but as usual
doesn’t affect the parent.

Here is our version of system for interactive programs; it uses progname
for error messages. You should ignore the parts of the function that deal with
signals; we will return to them in the next section.
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/%
+ Safer version of system for interactive programs
*/

#include <signal.h>

#include <stdio.h>

system(s) /% run command line s %/
char =*s;

{
int status, pid, w, tty;
int (xistat)(), (xgstat)();
extern char xprogname;

fflush(stdout);
tty = open("/dev/tty", 2);
if (tty == -1) {
fprintf(stderr, "%s: can’t open /dev/tty\n", progname);
return -1;
}
if ((pid = fork()) == 0) {
close(0); dup(tty);
close(1); dup(tty);
close(2); dup(tty);

close(tty);
execlp("sh", "sh", "-¢c", s, (char %) 0);
exit(127);

}

close(tty);

istat = signal(SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG_IGN);

while ((w = wait(&status)) I!= pid && w != -1)
H

if (w == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, gstat);
return status;

}

Note that /dev/tty is opened with mode 2 — read and write — and then
dup’ed to form the standard input and output. This is actually how the system
assembles the standard input, output and error when you log in. Therefore,
your standard input is writable:

$ echo hello 1>&0
hello
$

This means we could have dup’ed file descriptor 2 to reconnect the standard
input and output, but opening /dev/tty is cleaner and safer. Even this
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system has potential problems: open files in the caller, such as tty in the
routine ttyin in p, will be passed to the child process.

The lesson here is not that you should use our version of system for all
your programs — it would break a non-interactive ed, for example — but that
you should understand how processes are managed and use the primitives
correctly; the meaning of ‘“‘correctly” varies with the application, and may not
agree with the standard implementation of system.

7.5 Signals and interrupts

This section is concerned with how to deal gracefully with signals (like
interrupts) from the outside world, and with program faults. Program faults
arise mainly from illegal memory references, execution of peculiar instructions,
or floating point errors. The most common outside-world signals are interrupt,
which is sent when the DEL character is typed; quit, generated by the FS char-
acter (ctl-\); hangup, caused by hanging up the phone; and terminate, gen-
erated by the kill command. When one of these events occurs, the signal is
sent to all processes that were started from the same terminal; unless other
arrangements have been made, the signal terminates the process. For most sig-
nals, a core image file is written for potential debugging. (See adb(l) and
sdb(1).)

The system call signal alters the default action. It has two arguments.
The first is a number that specifies the signal. The second is either the address
of a function, or a code which requests that the signal be ignored or be given
the default action. The file <signal.h> contains definitions for the various
arguments. Thus

#include <signal.h>

signal(SIGINT, SIG_IGN);
causes interrupts to be ignored, while

signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns
the previous value of the signal. If the second argument to signal is the
name of a function (which must have been declared already in the same source
file), the function will be called when the signal occurs. Most commonly this
facility is used to allow the program to clean up unfinished business before ter-
minating, for example to delete a temporary file:
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#include <signal.h>
char x*tempfile = "temp.XXXXXX";

main()
{

extern onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

mktemp(tempfile);

/% Process ... #/

exit(0);
}
onintr() /% clean up if interrupted */
{
unlink(tempfile);
exit(1);
}

Why the test and the double call to signal in main? Recall that signals
are sent to all processes started from a particular terminal. Accordingly, when
a program is to be run non-interactively (started by &), the shell arranges that
the program will ignore interrupts, so it won’t be stopped by interrupts
intended for foreground processes. If this program began by announcing that
all interrupts were to be sent to the onintr routine regardless, that would
undo the shell’s effort to protect it when.run in the background.

The solution, shown above, is to test the state of interrupt handling, and to
continue to ignore interrupts if they are already being ignored. The code as
written depends on the fact that signal returns the previous state of a partic-
ular signal. If signals were already being ignored, the process should continue
to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and inter-
pret it as a request to stop what it is doing and return to its own command-
processing loop. Think of a text editor: interrupting a long printout should not
cause it to exit and lose the work already done. The code for this case can be
written like this:
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#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main()
{

int onintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);
setjmp(sjbuf); /* save current stack position #/

for (;;) {
/+ main processing loop #/
}
}
onintr() /% reset if interrupted »/
{
signal(SIGINT, onintr); /#* reset for next interrupt =/
printf("\nInterrupt\n");
longjmp(sjbuf, 0); /+# return to saved state #/
}

The file <setjmp.h> declares the type jmp_buf as an object in which the
stack position can be saved; sjbuf is declared to be such an object. The func-
tion setjmp(3) saves a record of where the program was executing. The
values of variables are nor saved. When an interrupt occurs, a call is forced to
the onintr routine, which can print a message, set flags, or whatever.
longjmp takes as argument an object stored into by setjmp, and restores
control to the location after the call to setjmp. So control (and the stack
level) will pop back to the place in the main routine where the main loop is
entered.

Notice that the signal is set again in onintr after an interrupt occurs.
This is necessary: signals are automatically reset to their default action when
they occur.

Some programs that want to detect signals simply can’t be stopped at an
arbitrary point, for example in the middle of updating a complicated data struc-
ture. The solution is to have the interrupt routine set a flag and return instead
of calling exit or longjmp. Execution will continue at the exact point it was
interrupted, and the interrupt flag can be tested later.

There is one difficulty associated with this approach. Suppose the program
is reading the terminal when the interrupt is sent. The specified routine is duly
called; it sets its flag and returns. If it were really true, as we said above, that
execution resumes ‘‘at the exact point it was interrupted,” the program would
continue reading the terminal until the user typed another line. This behavior
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might well be confusing, since the user might not know that the program is
reading, and presumably would prefer to have the signal take effect instantly.
To resolve this difficulty, the system terminates the read, but with an error
status that indicates what happened: errno is set to EINTR, defined in
<errno.h>, to indicate an interrupted system call.

Thus programs that catch and resume execution after signals should be
prepared for “‘errors’ caused by interrupted system calls. (The system calls to
watch out for are reads from a terminal, wait, and pause.) Such a program
could use code like the following when it reads the standard input:

#include <errno.h>
extern int errno;

if (read(0, &c, 1) <= 0) /% EOF or interrupted x/
if (errno == EINTR) { /% EOF caused by interrupt #/
errno = 0; /% reset for next time =/

} else { /% true end of file #/

}

There is a final subtlety to keep in mind when signal-catching is combined
with execution of other programs. Suppose a program catches interrupts, and
also includes a method (like ““!”” in ed) whereby other programs can be exe-
cuted. Then the code would look something like this:

if (fork() == 0)

execlp(...);
signal (SIGINT, SIG_IGN); /% parent ignores interrupts =/
wait(&status); /# until child is done =/
signal (SIGINT, onintr); /# restore interrupts #/

Why is this? Signals are sent to all your processes. Suppose the program you
call catches its own interrupts, as an editor does. If you interrupt the subpro-
gram, it will get the signal and return to its main loop, and probably read your
terminal. But the calling program will also pop out of its wait for the subpro-
gram and read your terminal. Having two processes reading your terminal is
very confusing, since in effect the system flips a coin to decide who should get
each line of input. The solution is to have the parent program ignore inter-
rupts until the child is done. This reasoning is reflected in the signal handling
in system:
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#include <signal.h>

system(s) /% run command line s %/

char =*s;
{
int status, pid, w, tty;
int (xistat)(), (xgstat)();
if ((pid = fork()) == 0) {
execlp("sh", "sh", "-c", s, (char =) 0);
exit(127);
}
istat = signal(SIGINT, SIG_IGN);
gstat = signal(SIGQUIT, SIG_IGN);
while ((w = wait(&status)) != pid && w I= -1)
if (w == -1)
status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, gstat);
return status;
}

As an aside on declarations, the function signal obviously has a rather
strange second argument. It is in fact a pointer to a function delivering an
integer, and this is also the type of the signal routine itself. The two values
SIG_IGN and SIG_DFL have the right type, but are chosen so they coincide
with no possible actual functions. For the enthusiast, here is how they are
defined for the PDP-11 and VAX; the definitions should be sufficiently ugly to
encourage use of <signal.h>.

#define SIG_DFL (int (=)())0
#define SIG_IGN (int (*)())1

Alarms

The system call alarm(n) causes a signal SIGALRM to be sent to your pro-
cess n seconds later. The alarm signal can be used for making sure that some-
thing happens within the proper amount of time; if the something happens, the
alarm signal can be turned off, but if it does not, the process can regain control
by catching the alarm signal.

To illustrate, here is a program called timeout that runs another com-
mand; if that command has not finished by the specified time, it will be
aborted when the alarm goes off. For example, recall the watchfor com-
mand from Chapter 5. Rather than having it run indefinitely, you might set a
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limit of an hour:

$ timeout -3600 watchfor dmg &

The code in timeout illustrates almost everything we have talked about in
the past two sections. The child is created; the parent sets an alarm and then
waits for the child to finish. If the alarm arrives first, the child is killed. An
attempt is made to return the child’s exit status.

/% timeout: set time limit on a process */
#include <stdio.h>

#include <signal.h>

int pid; /% child process id =/

char xprogname;

main(argc, argv)
int argc;
char =argv([];

{
int sec = 10, status, onalarm();
progname = argv[0];
if (argc > 1 && argv[11[0] == “-’) {
sec = atoi(&argv[1]1[1]);
argc--;
‘argv++;
}
if (argc < 2)
error("Usage: %s [-10] command”, progname);
if ((pid=fork()) == 0) {
execvpl(argv[1], &argv[1]);
error("couldn’t start %s", argv[1]);
}
signal (SIGALRM, onalarm);
alarm(sec);
if (wait(&status) == -1 || (status & 0177) != 0)
error("%s killed", argv[(1]);
exit((status >> 8) & 0377);
}
onalarm() /% kill child when alarm arrives =/
{
kill(pid, SIGKILL);
}

Exercise 7-18. Can you infer how sleep is implemented? Hint: pause(2). Under
what circumstances, if any, could sleep and alarm interfere with each other? O
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History and bibliographic notes

There is no detailed description of the UNIX system implementation, in part
because the code is proprietary. Ken Thompson’s paper “UNIX implementa-
tion” (BSTJ, July, 1978) describes the basic ideas. Other papers that discuss
related topics are ‘“The UNIX system—a retrospective’” in the same issue of
BSTJ, and “The evolution of the UNIX time-sharing system’ (Symposium on
Language Design and Programming Methodology, Springer-Verlag Lecture
Notes in Computer Science #79, 1979.) Both are by Dennis Ritchie.

The program readslow was invented by Peter Weinberger, as a low-
overhead way for spectators to watch the progress of Belle, Ken Thompson and
Joe Condon’s chess machine, during chess tournaments. Belle recorded the
status of its game in a file; onlookers polled the file with readslow so as not
to steal too many precious cycles from Belle. (The newest version of the Belle
hardware does little computing on its host machine, so the problem has gone
away.)

Our inspiration for spname comes from Tom Duff. A paper by Ivor Dur-
ham, David Lamb and James Saxe entitled ““‘Spelling correction in user inter-
faces,” CACM, October, 1983, presents a somewhat different design for spel-
ling correction, in the context of a mail program.






CHAPTER 8: PROGRAM DEVELOPMENT

The UNIX system was originally meant as a program development environ-
ment. In this chapter we’ll talk about some of the tools that are particularly
suited for developing programs. Our vehicle is a substantial program, an inter-
preter for a programming language comparable in power to BASIC. We chose
to implement a language because it’s representative of problems encountered in
large programs. Furthermore, many programs can profitably be viewed as
languages that convert a systematic input into a sequence of actions and out-
puts, so we want to illustrate the language development tools.

In this chapter, we will cover specific lessons about
e yacc, a parser generator, a program that generates a parser from a gram-

matical description of a language;

e make, a program for specifying and controlling the processes by which a
complicated program is compiled;

e lex, a program analogous to yacc, for making lexical analyzers.

We also want to convey some notions of how to go about such a project — the

importance of starting with something small and letting it grow; language evo-

lution; and the use of tools.

We will describe the implementation of the language in six stages, each of
which would be useful even if the development went no further. These stages
closely parallel the way that we actually wrote the program.

(1) A four-function calculator, providing +, -, %, / and parentheses, that
operates on floating point numbers. One expression is typed on each line;
its value is printed immediately.

(2) Variables with names a through z. This version also has unary minus and
some defenses against errors.

(3) Arbitrarily-long variable names, built-in functions for sin, exp, etc., use-
ful constants like w (spelled PI because of typographic limitations), and an
exponentiation operator.

(4) A change in internals: code is generated for each statement and subse-
quently interpreted, rather than being evaluated on the fly. No new
features are added, but it leads to (5).

(5) Control flow: if-else and while, statement grouping with { and }, and

233
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relational operators like >, <=, etc.

(6) Recursive functions and procedures, with arguments. We also added state-
ments for input and for output of strings as well as numbers.

The resulting language is described in Chapter 9, where it serves as the main

example in our presentation of the UNIX document preparation software.

Appendix 2 is the reference manual.

This is a very long chapter, because there’s a lot of detail involved in get-
ting a non-trivial program written correctly, let alone presented. We are
assuming that you understand C, and that you have a copy of the UNIX
Programmer’s Manual, Volume 2, close at hand, since we simply don’t have
space to explain every nuance. Hang in, and be prepared to read the chapter a
couple of times. We have also included all of the code for the final version in
Appendix 3, so you can see more easily how the pieces fit together.

By the way, we wasted a lot of time debating names for this language but
never came up with anything satisfactory. We settled on hoc, which stands
for “‘high-order calculator.” The versions are thus hoc1, hoc2, etc.

8.1 Stage 1: A four-function calculator

This section describes the implementation of hoc1, a program that provides
about the same capabilities as a minimal pocket calculator, and is substantially
less portable. It has only four functions: +, -, #, and /, but it does have
parentheses that can be nested arbitrarily deeply, which few pocket calculators
provide. If you type an expression followed by RETURN, the answer will be
printed on the next line:

$ hoci1
4x3%2
24
(1+2) * (3+4)
21
1/2
0.5
355/113
3.1415929
-3-4
hoc1: syntax error near line 4 It doesn’t have unary minus yet
$
Grammars

Ever since Backus-Naur Form was developed for Algol, languages have
been described by formal grammars. The grammar for hoc1 is small and sim-
ple in its abstract representation:
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list: expr \n
list expr \n
expr: NUMBER
expr + expr
expr - expr
expr #* expr
expr / expr
( expr )

In other words, a 1ist is a sequence of expressions, each followed by a new-
line. An expression is a number, or a pair of expressions joined by an opera-
tor, or a parenthesized expression.

This is not complete. Among other things, it does not specify the normal
precedence and associativity of the operators, nor does it attach a meaning to
any construct. And although list is defined in terms of expr, and expr is
defined in terms of NUMBER, NUMBER itself is nowhere defined. These details
have to be filled in to go from a sketch of the language to a working program.

Overview of yacc

yvacc is a parser generator,T that is, a program for converting a grammati-
cal specification of a language like the one above into a parser that will parse
statements in the language. yacc provides a way to associate meanings with
the components of the grammar in such a way that as the parsing takes place,
the meaning can be “‘evaluated’ as well. The stages in using yacc are the fol-
lowing.

First, a grammar is written, like the one above, but more precise. This
specifies the syntax of the language. yacc can be used at this stage to warn of
errors and ambiguities in the grammar.

Second, each rule or production of the grammar can be augmented with an
action — a statement of what to do when an instance of that grammatical form
is found in a program being parsed. The “what to do” part is written in C,
with conventions for connecting the grammar to the C code. This defines the
semantics of the language.

Third, a lexical analyzer is needed, which will read the input being parsed
and break it up into meaningful chunks for the parser. A NUMBER is an exam-
ple of a lexical chunk that is several characters long; single-character operators
like + and * are also chunks. A lexical chunk is traditionally called a token.

Finally, a controlling routine is needed, to call the parser that yacc built.

yacc processes the grammar and the semantic actions into a parsing func-
tion, named yyparse, and writes it out as a file of C code. If yacc finds no
errors, the parser, the lexical analyzer, and the control routine can be

T yacc stands for “yet another compiler-compiler,” a comment by its creator, Steve Johnson, on
the number of such programs extant at the time it was being developed (around 1972). yacc is
one of a handful that have flourished.
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compiled, perhaps linked with other C routines, and executed. The operation
of this program is to call repeatedly upon the lexical analyzer for tokens,
recognize the grammatical (syntactic) structure in the input, and perform the
semantic actions as each grammatical rule is recognized. The entry to the lexi-
cal analyzer must be named yylex, since that is the function that yyparse
calls each time it wants another token. (All names used by yacc start with y.)
To be somewhat more precise, the input to yacc takes this form:

%{

C statements like #include, declarations, etc. This section is optional.

%}

yacc declarations: lexical tokens, grammar variables,

precedence and associativity information

%%

grammar rules and actions

%%

more C statements (optional):

main() { ...; yyparse(); ... }

yylex() { ... }

This is processed by yacc and the result written into a file called y.tab.c,
whose layout is like this:

C statements from between %{ and %}, if any
C statements from after second %%, if any:
main() { ...; yyparse(); ... }
yylex() { ... }

yyparse() { parser, which calls yylex() }

It is typical of the UNIX approach that yacc produces C instead of a com-
piled object (.o) file. This is the most flexible arrangement — the generated
code is portable and amenable to other processing whenever someone has a
good idea.

yvacc itself is a powerful tool. It takes some effort to learn, but the effort
is repaid many times over. yacc-generated parsers are small, efficient, and
correct (though the semantic actions are your own responsibility); many nasty
parsing problems are taken care of automatically. Language-recognizing pro-
grams are easy to build, and (probably more important) can be modified
repeatedly as the language definition evolves.

Stage 1 program

The source code for hoc1 consists of a grammar with actions, a lexical rou-
tine yylex, and a main, all in one file hoc.y. (yacc filenames traditionally
end in .y, but this convention is not enforced by yacc itself, unlike cc and
.c.) The grammar part is the first half of hoc.y:
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$ cat hoc.y

%{

#define YYSTYPE double /* data type of yacc stack */

%}

%token NUMBER

%left M A /% left associative, same precedence x/

%left A4 /% left assoc., higher precedence */
%%
list: /% nothing %/
i list ‘\n’
! list expr ‘\n’ { printf("\t%.8g\n", $2); }
9
expr: NUMBER { $$ = $1; }
i expr ‘+’ expr { $$ = $1 + $3; }
i expr ‘-’ expr { $$ = $1 - $3; }
| expr “#’ expr { $$ = $1 » $3; }
| expr ’/’ expr { $%$ = $1 / $3; }
i (" expr ‘)’ { $$ = $2; }

5
%%
/% end of grammar */

There’s a lot of new information packed into these few lines. We are not
going to explain all of it, and certainly not how the parser works — for that,
you will have to read the yacc manual.

Alternate rules are separated by ‘1’. Any grammar rule can have an associ-
ated action, which will be performed when an instance of that rule is recog-
nized in the input. An action is a sequence of C statements enclosed in braces
{ and }. Within an action, $n (that is, $1, $2, etc.) refers to the value
returned by the n-th component of the rule, and $$ is the value to be returned
as the value of the whole rule. So, for example, in the rule

expr: NUMBER { $$ = $1; }

$1 is the value returned by recognizing NUMBER, that value is to be returned as
the value of the expr. The particular assignment $$=$1 can be omitted — $$
is always set to $1 unless you explicitly set it to something else.

At the next level, when the rule is

’

expr: expr ‘+’ expr { $$ = $1 + $3; }

the value of the result expr is the sum of the values from the two component
expr’s. Notice that *+’ is $2; every component is numbered.

At the level above this, an expression followed by a newline (’\n’) is
recognized as a list and its value printed. If the end of the input follows such a
construction, the parsing process terminates cleanly. A list can be an empty
string; this is how blank input lines are handled.

vacc input is free form; our format is the recommended standard.
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In this implementation, the act of recognizing or parsing the input also
causes immediate evaluation of the expression. In more complicated situations
(including hoc4 and its successors), the parsing process generates code for
later execution.

You may find it helpful to visualize parsing as drawing a parse tree like the
one in Figure 8.1, and to imagine values being computed and propagated up
the tree from the leaves towards the root.

list

expr

list NUMBER NUMBER | NUMBER

|/ / \

(empty) 2 + 3 * 4 \n

Figure 8.1: Parse Tree for 2 + 3 » 4

The values of incompletely-recognized rules are actually kept on a stack; this is
how the values are passed from one rule to the next. The data type of this
stack is normally an int, but since we are processing floating point numbers,
we have to override the default. The definition

#define YYSTYPE double

sets the stack type to double.

Syntactic classes that will be recognized by the lexical analyzer have to be
declared unless they are single character literals like “+’ and ’-’. The
declaration %token declares one or more such objects. Left or right associa-
tivity can be specified if appropriate by using %left or %right instead of
%token. (Left associativity means that a-b-c will be parsed as (a-b)-c
instead of a-(b-c).) Precedence is determined by order of appearance:
tokens in the same declaration are at the same level of precedence; tokens
declared later are of higher precedence. In this way the grammar proper is
ambiguous (that is, there are multiple ways to parse some inputs), but the
extra information in the declarations resolves the ambiguity.

The rest of the code is the routines in the second half of the file hoc.y:
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Continuing hoc.y
#include <stdio.h>
#include <ctype.h>

char *progname ; /% for error messages */
int lineno = 1;
main(argc, argv) /% hoc1 #/
char xargv[];
{
progname = argv[O0];
yyparse();
}

main calls yyparse to parse the input. Looping from one expression to the
next is done entirely within the grammar, by the sequence of productions for
list. It would have been equally acceptable to put a loop around the call to
yyparse in main and have the action for 1ist print the value and return
immediately.

yyparse in turn calls yylex repeatedly for input tokens. Our yylex is
easy: it skips blanks and tabs, converts strings of digits into a numeric value,
counts input lines for error reporting, and returns any other character as itself.
Since the grammar expects to see only +, -, #, /, (, ), and \n, any other
character will cause yyparse to report an error. Returning a 0 signals “‘end
of file”’ to yyparse.

Continuing hoc.y
yylex() /% hoc1 =/
{

int c;

]
Q
[}
n
~
7
ct
~
~

while ((c=getchar()) == * *

b
if (¢ == EOF)
return 0;

if (¢ == .’ 1| isdigit(c)) { /% number */
ungetc(c, stdin);
scanf ("%1f", &yylval);
return NUMBER;
}
if (c == ‘\n’)
lineno++;
return c;

}

The variable yylval is used for communication between the parser and the
lexical analyzer; it is defined by yyparse, and has the same type as the yacc
stack. yylex returns the type of a token as its function value, and sets
yylval to the value of the token (if there is one). For instance, a floating
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point number has the type NUMBER and a value like 12.34. For some tokens,
especially single characters like “+’ and ‘\n’, the grammar does not use the
value, only the type. In that case, yylval need not be set.

The yacc declaration %token NUMBER is converted into a #define state-
ment in the yacc output file y.tab.c, so NUMBER can be used as a constant
anywhere in the C program. yacc chooses values that won’t collide with
ASCII characters.

If there is a syntax error, yyparse calls yyerror with a string containing
the cryptic message “‘syntax error.” The yacc user is expected to provide
a yyerror; ours just passes the string on to another function, warning,
which prints somewhat more information. Later versions of hoc will make
direct use of warning.

yyerror(s) /+ called for yacc syntax error #/
char =#s;
{
warning(s, (char =) 0);
}
warning(s, t) /+ print warning message #/
char »s, =t;
{
fprintf(stderr, "%s: %s", progname, s);
if (t)
fprintf(stderr, " %s", t);
fprintf(stderr, " near line %d\n", lineno);
}

This marks the end of the routines in hoc.y.
Compilation of a yacc program is a two-step process:

$ yacc hoc.y Leaves output in y.tab.c
$ cc y.tab.c -o hoc1 Leaves executable program in hoc1
$ hoc1
273
0.66666667
-3-4
hoc1: syntax error near line 1
$

Exercise 8-1. Examine the structure of the y.tab.c file. (It’s about 300 lines long for
hoc1.) O

Making changes — unary minus
We claimed earlier that using yacc makes it easy to change a language.
As an illustration, let’s add unary minus to hoc1, so that expressions like

-3-4
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are evaluated, not rejected as syntax errors.

Exactly two lines have to be added to hoc.y. A new token UNARYMINUS
is added to the end of the precedence section, to make unary minus have
highest precedence:

%left ‘4’ ‘-’
%left  ‘x’ '/’
%left  UNARYMINUS /% new =/

The grammar is augmented with one more production for expr:

expr: NUMBER { $$ = $15 }
| -’ expr %prec UNARYMINUS { $$ = -$2; } /# new */

The %prec says that a unary minus sign (that is, a minus sign before an
expression) has the precedence of UNARYMINUS (high); the action is to change
the sign. A minus sign between two expressions takes the default precedence.

Exercise 8-2. Add the operators % (modulus or remainder) and unary + to hoc1.
Suggestion: look at frexp(3). O

A digression on make

It’s a nuisance to have to type two commands to compile a new version of
hoc1. Although it’s certainly easy to make a shell file that does the job,
there’s a better way, one that will generalize nicely later on when there is more
than one source file in the program. The program make reads a specification
of how the components of a program depend on each other, and how to pro-
cess them to create an up-to-date version of the program. It checks the times
at which the various components were last modified, figures out the minimum
amount of recompilation that has to be done to make a consistent new version,
then runs the processes. make also understands the intricacies of multi-step
processes like yacc, so these tasks can be put into a make specification
without spelling out the individual steps.

make is most useful when the program being created is large enough to be
spread over several source files, but it’s handy even for something as small as
hoc1. Here is the make specification for hoc1, which make expects in a file
called makefile.

$ cat makefile
hoc1: hoc.o
cc hoc.o -o hoc1

$

This says that hoc1 depends on hoc.o, and that hoc.o is converted into
hoc1 by running the C compiler cc and putting the output in hoc1. make
already knows how to convert the yacc source file in hoc.y to an object file
hoc.o:
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$ make Make the first thing in makefile, hoc1
yacc hoc.y

cc -c y.tab.c

rm y.tab.c

mv y.tab.o hoc.o

cc hoc.o -o hoc1

$ make Do it again
‘hoc1’ is up to date. make realizes it’s unnecessary
$

8.2 Stage 2: Variables and error recovery

The next step (a small one) is to add “memory” to hoc1, to make hoc2.
The memory is 26 variables, named a through z. This isn’t very elegant, but
it’s an easy and useful intermediate step. We’ll also add some error handling.
If you try hoc1, you’ll recognize that its approach to syntax errors is to print a
message and die, and its treatment of arithmetic errors like division by zero is
reprehensible:

$ hoc1

170

Floating exception - core dumped
$

The changes needed for these new features are modest, about 35 lines of
code. The lexical analyzer yylex has to recognize letters as variables; the
grammar has to include productions of the form

expr: VAR
i VAR ‘=’ expr

An expression can contain an assignment, which permits multiple assignments
like

The easiest way to store the values of the variables is in a 26-element array;
the single-letter variable name can be used to index the array. But if the gram-
mar is to process both variable names and values in the same stack, yacc has
to be told that its stack contains a union of a double and an int, not just a
double. This is done with a %union declaration near the top. A #define
or a typedef is fine for setting the stack to a basic type like double, but the
%union mechanism is required for union types because yacc checks for con-
sistency in expressions like $$=$2.

Here is the grammar part of hoc.y for hoc2:
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$ cat hoc.y

%{
double mem[26]; /% memory for variables ‘a’..’z’ %/
%}
%union { /+ stack type %/
double wval; /% actual value =/
int index; /#* index into mem[] */
}

%token <val> NUMBER
%token <index> VAR
%type <val> expr
%right ‘=’

%left fal =

%left ‘w0

%left UNARYMINUS

%%

list: /+ nothing */
i list ‘\n’
i list expr ‘\n’ { printf("\t%.8g\n", $2); }
i list error ’\n’ { yyerrok; }
9
expr: NUMBER
| VAR { $$ = mem[$1]; }
| VAR "=’ expr { $$ = mem[$1] = $3; }
| expr "+’ expr { $$ = $1 + $3; }
| expr -’ expr { $$ = $1 - $3; }
i expr '+’ expr { $$ = $1 * $3; }
i expr ‘/’ expr {
if ($3 == 0.0)
execerror("division by zero", "");

$$ = $1 / $3; }
1 (" expr )’ { $%$ = $2; }
i -’ expr %prec UNARYMINUS { $$ = -$2; }

%%
/% end of grammar */

The %union declaration says that stack elements hold either a double (a
number, the usual case), or an int, which is an index into the array mem.
The %token declarations have been augmented with a type indicator. The
%type declaration specifies that expr is the <val> member of the union, i.e.,
a double. The type information makes it possible for yacc to generate refer-
ences to the correct members of the union. Notice also that = is right-
associative, while the other operators are left-associative.

Error handling comes in several pieces. The obvious one is a test for a zero
divisor; if one occurs, an error routine execerror is called.

A second test is to catch the “floating point exception” signal that occurs
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when a floating point number overflows. The signal is set in main.

The final part of error recovery is the addition of a production for error.
“error” is a reserved word in a yacc grammar; it provides a way to antici-
pate and recover from a syntax error. If an error occurs, yacc will eventually
try to use this production, recognize the error as grammatically ‘“‘correct,” and
thus recover. The action yyerrok sets a flag in the parser that permits it to
get back into a sensible parsing state. Error recovery is difficult in any parser;
you should be aware that we have taken only the most elementary steps here,
and have skipped rapidly over yacc’s capabilities as well.

The actions in the hoc2 grammar are not much changed. Here is main, to
which we have added setjmp to save a clean state suitable for resuming after
an error. execerror does the matching longjmp. (See Section 7.5 for a
description of set jmp and longjmp.)

#include <signal.h>
#include <setjmp.h>
jmp_buf begin;

main(argc, argv) /% hoc2 =/
char #argv([];

{
int fpecatch();

progname = argv[0];
setjmp(begin);

signal (SIGFPE, fpecatch);
yyparse();

execerror(s, t) /# recover from run-time error */
char s, =#t;

{
warning(s, t);
longjmp(begin, 0);
}
fpecatch() /% catch floating point exceptions x*/
{
execerror("floating point exception", (char %) 0);
}

For debugging, we found it convenient to have execerror call abort (see
abort(3)), which causes a core dump that can be perused with adb or sdb.
Once the program is fairly robust, abort is replaced by longjmp.

The lexical analyzer is a little different in hoc2. There is an extra test for
a lower-case letter, and since yylval is now a union, the proper member has
to be set before yylex returns. Here are the parts that have changed:



CHAPTER 8 PROGRAM DEVELOPMENT 245

yylex() /% hoc2 #/

if (¢ == “.” 1l isdigit(c)) { /+ number */
ungetc(c, stdin);
scanf ("%1f", &yylval.val);
return NUMBER;

}

if (islower(c)) {
yylval.index = ¢ - “a’; /% ASCII only */
return VAR;

Again, notice how the token type (e.g., NUMBER) is distinct from its value
(e.g., 3.1416).

Let us illustrate variables and error recovery, the new things in hoc2:

$ hoc2
x = 355

355
113

y
113

p = x/z z is undefined and thus zero
hoc2: division by zero near line 4 Error recovery
x/y
3.1415929
1€30 * 1e30 Overflow
hoc2: floating point exception near line 5

Actually, the PDP-11 requires special arrangements to detect floating point
overflow, but on most other machines hoc2 behaves as shown.

Exercise 8-3. Add a facility for remembering the most recent value computed, so that it
does not have to be retyped in a sequence of related computations. One solution is to
make it one of the variables, for instance ‘p’ for ‘previous.” O

Exercise 8-4. Modify hoc so that a semicolon can be used as an expression terminator
equivalent to a newline. O

§.3 Stage 3: Arbitrary variable names; built-in functions

This version, hoc3, adds several major new capabilities, and a correspond-
ing amount of extra code. The main new feature is access to built-in functions:

sin cos atan exp log log10
sqrt int abs

We have also added an exponentiation operator ‘~’; it has the highest pre-
cedence, and is right-associative.
Since the lexical analyzer has to cope with built-in names longer than a
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single character, it isn’t much extra effort to permit variable names to be arbi-
trarily long as well. We will need a more sophisticated symbol table to keep
track of these variables, but once we have it, we can pre-load it with names
and values for some useful constants:

PI 3.14159265358979323846

E 2.71828182845904523536  Base of natural logarithms
GAMMA 0.57721566490153286060  Euler-Mascheroni constant
DEG 57.29577951308232087680  Degrees per radian

PHI 1.61803398874989484820  Golden ratio

The result is a useful calculator:

$ hoc3
1.572.3

2.5410306
exp(2.3xlog(1.5))

2.5410306
sin(PI/2)

1
atan(1)*DEG

45

We have also cleaned up the behavior a little. In hoc2, the assignment
x=expr not only causes the assignment but also prints the value, because all
expressions are printed:

$ hoc2
x = 2 % 3.14159
6.28318 Value printed for assignment to variable

In hoc3, a distinction is made between assignments and expressions; values are
printed only for expressions:

$ hoc3
x = 2 % 3.14159 Assignment: no value is printed
x Expression:

6.28318 value is printed

The program that results from all these changes is big enough (about 250
lines) that it is best split into separate files for easier editing and faster compi-
lation. There are now five files instead of one:
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hoc.y Grammar, main, yylex (as before)
hoc.h Global data structures for inclusion
symbol.c Symbol table routines: lookup, install
init.c Built-ins and constants; init

math.c Interfaces to math routines: Sqrt, Log, etc.

This requires that we learn more about how to organize a multi-file C pro-
gram, and more about make so it can do some of the work for us.

We’ll get back to make shortly. First, let us look at the symbol table code.
A symbol has a name, a type (it’s either a VAR or a BLTIN), and a value. If
the symbol is a VAR, the value is a double; if the symbol is a built-in, the
value is a pointer to a function that returns a double. This information is
needed in hoc.y, symbol.c, and init.c. We could just make three copies,
but it’s too easy to make a mistake or forget to update one copy when a change
is made. Instead we put the common information into a header file hoc.h
that will be included by any file that needs it. (The suffix .h is conventional
but not enforced by any program.) We will also add to the makefile the fact
that these files depend on hoc.h, so that when it changes, the necessary
recompilations are done too.

$ cat hoc.h
typedef struct Symbol { /% symbol table entry %/

char *name;
short type; /% VAR, BLTIN, UNDEF %/
union {
double val; /% if VAR #/
double (x*ptr)(); /% if BLTIN =/
}ou;
struct Symbol *next; /% to link to another x/
} Symbol;
Symbol #install(), *lookup();

$

The type UNDEF is a VAR that has not yet been assigned a value.

The symbols are linked together in a list using the next field in Symbol.
The list itself is local to symbol.c; the only access to it is through the func-
tions lookup and install. This makes it easy to change to symbol table
organization if it becomes necessary. (We did that once.) lookup searches
the list for a particular name and returns a pointer to the Symbol with that
name if found, and zero otherwise. The symbol table uses linear search, which
is entirely adequate for our interactive calculator, since variables are looked up
only during parsing, not execution. install puts a variable with its associ-
ated type and value at the head of the list. emalloc calls malloc, the stan-
dard storage allocator (malloc(3)), and checks the result. These three rou-
tines are the contents of symbol.c. The file y.tab.h is generated by run-
ning yacc -d; it contains #define statements that yacc has generated for
tokens like NUMBER, VAR, BLTIN, etc.
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$ cat symbol.c
#include "hoc.h"
#include "y.tab.h"

static Symbol #symlist = 0; /* symbol table: linked list =/

Symbol *lookup(s) /% find s in symbol table */
char #s;
{
Symbol #sp;
for (sp = symlist; sp != (Symbol %) 0; sp = sp->next)
if (strcmp(sp->name, s) == 0)
return sp;
return 0; /% 0 ==> not found =/
}
Symbol #install(s, t, d) /% install s in symbol table x/
char =s;
int t;
double d;
{
Symbol #sp;

char #emalloc();

sp = (Symbol %) emalloc(sizeof(Symbol));

sp->name = emalloc(strlen(s)+1); /% +1 for ‘\0’ =/
strcpy(sp->name, s);

sp->type = t;

sp->u.val = d;

sp->next = symlist; /% put at front of list =/
symlist = sp;

return sp;

}
char #emalloc(n) /% check return from malloc =/
unsigned n;
{
char #p, *malloc();
p = malloc(n);
if (p == 0)
execerror("out of memory", (char ) 0);
return p;
}
$

The file init.c contains definitions for the constants (PI, etc.) and func-
tion pointers for built-ins; they are installed in the symbol table by the function
init, which is calied by main.
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$ cat init.c
#include "hoc.h"
#include "y.tab.h"
#include <math.h>

extern double Log(), Log10(), Exp(), Sqrt(), integer();
static struct { /% Constants */
char *name;
double cval;
} consts[] = {
"pPI1I", 3.14159265358979323846,
"E", 2.71828182845904523536,
"GAMMA", 0.57721566490153286060, /x Euler x/
"DEG", 57.29577951308232087680, /% deg/radian x/
"PHI", 1.61803398874989484820, /% golden ratio %/

o, 0

}s

static struct { /% Built-ins =/
char *name ;

double (*func)();
} builtins[] = {

"sin", sin,

"COS“, cos,

"atan", atan,

"log", Log, /% checks argument */
"log10", Log10, /% checks argument */
"exp", Exp, /% checks argument =/

"sqrt", Sqrt, /% checks argument %/
"int", integer,
"abs", fabs,
0, 0
};
init() /* install constants and built-ins in table */

int i;
Symbol *s;

for (i = 0; consts[i].name; i++)
install(consts[i].name, VAR, consts[i].cval);
for (i = 0; builtins[i].name; i++) {
s = install(builtins[i].name, BLTIN, 0.0);
s->u.ptr = builtins[i].func;

}

The data is kept in tables rather than being wired into the code because tables
are easier to read and to change. The tables are declared static so that they
are visible only within this file rather than throughout the program. We’ll
come back to the math routines like Log and Sqrt shortly.
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With the foundation in place, we can move on to the changes in the gram-
mar that make use of it.

$ cat hoc.y

%{

#include "hoc.h"
extern double Pow();

%}
%union {

double wval; /% actual value %/

Symbol #sym; /% symbol table pointer =/
}

%token <val> NUMBER

%token <sym> VAR BLTIN UNDEF
%type <val> expr asgn
%right ’=’

%left S

%left A

%left UNARYMINUS

%right ’'°’ /% exponentiation x/

%%

list: /% nothing */
i list ‘\n’
{ list asgn ‘\n’
i list expr ’\n’ { printf("\t%.8g\n", $2); }
! list error ’\n’ { yyerrok; }
H

asgn: VAR ‘=’ expr { $$=$1->u.val=$3; $1->type = VAR; }
H

expr: NUMBER

i VAR { if ($1->type == UNDEF)
execerror("undefined variable", $1->name);
$$ = $1->u.val; }

{ asgn
{ BLTIN ’(’ expr ‘)’ { $$ = (*($1->u.ptr))($3); }
! expr "+’ expr { $$ = $1 + $3; }
! expr -’ expr { $$ = $1 - $3; }
! expr "+’ expr { $$ = $1 = $3; }
| expr ’/’ expr {
if ($3 == 0.0)
execerror("division by zero", "");
$$ = $1 / $3; 1}
expr "’ expr { $$ = Pow($1, $3); 1}

‘(’ expr )" { $%$ = $2; }
‘-’ expr %prec UNARYMINUS { $$ = -$2; }

%%
/% end of grammar %/
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The grammar now has asgn, for assignment, as well as expr; an input line
that contains just

VAR = expr

is an assignment, and so no value is printed. Notice, by the way, how easy it
was to add exponentiation to the grammar, including its right associativity.

The yacc stack has a different %union: instead of referring to a variable
by its index in a 26-element table, there is a pointer to an object of type
Symbol. The header file hoc.h contains the definition of this type.

The lexical analyzer recognizes variable names, looks them up in the sym-
bol table, and decides whether they are variables (VAR) or built-ins (BLTIN).
The type returned by yylex is one of these; both user-defined variables and
pre-defined variables like PI are VAR’s.

One of the properties of a variable is whether or not it has been assigned a
value, so the use of an undefined variable can be reported as an error by
yyparse. The test for whether a variable is defined has to be in the gram-
mar, not in the lexical analyzer. When a VAR is recognized lexically, its con-
text isn’t yet known; we don’t want a complaint that x is undefined when the
context is perfectly legal one such as the left side of an assignment like x=1.

Here is the revised part of yylex:

yylex() /% hoc3 =/

if (isalpha(c)) {
Symbol xs;
char sbuf[100], *p = sbuf;
do {
*p++ = C;
} while ((c=getchar()) != EOF && isalnum(c))
ungetc(c, stdin);
*p = '\0";
if ((s=lookup(sbuf)) == 0)
s = install(sbuf, UNDEF, 0.0);
yylval.sym = s;
return s->type == UNDEF ? VAR : s->type;

main has one extra line, which calls the initialization routine init to
install built-ins and pre-defined names like PI in the symbol table.
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main(argc, argv) /% hoc3 =/
char =xargv[];

{
int fpecatch();

progname = argv[0];
init();
setjmp(begin);
signal (SIGFPE, fpecatch);
yyparse();

}

The only remaining file is math.c. Some of the standard mathematical
functions need an error-checking interface for messages and recovery — for
example the standard function sqrt silently returns zero if its argument is
negative. The code in math.c uses the error tests found in Section 2 of the
UNIX Programmer’s Manual; see Chapter 7. This is more reliable and portable
than writing our own tests, since presumably the specific limitations of the rou-
tines are best reflected in the “official”’ code. The header file <math.h> con-
tains type declarations for the standard mathematical functions. <errno.h>
contains names for the errors that can be incurred.

$ cat math.c

#include <math.h>
#include <errno.h>
extern int errno;
double errcheck();

double Log(x)
double x;
{
return errcheck(log(x), "log");
}
double Log10(x)
double x;

{
return errcheck(log10(x), "log10");
}
double Exp(x)
double x;
{
return errcheck(exp(x), "exp");
1
double Sqrt(x)
double x;
{
return errcheck(sqrt(x), "sqrt");
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double Pow(x, y)
double x, y;

{
return errcheck(pow(x,y), "exponentiation");
}
double integer(x)
double x;
{
return (double)(long)x;
}
double errcheck(d, s) /% check result of library call %/
double d;
char xs;
{
if (errno == EDOM) {
errno = 0;
execerror(s, "argument out of domain");
} else if (errno == ERANGE) ({
errno = 0;
execerror(s, "result out of range");
}
return d;
}
$

An interesting (and ungrammatical) diagnostic appears when we run yacc
on the new grammar:

$ yacc hoc.y

conflicts: 1 shift/reduce
$

The ‘‘shift/reduce’” message means that the hoc3 grammar is ambiguous: the
single line of input

x =1

can be parsed in two ways:
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list
|
expr list
| |
list asgn list asgn
| |
(empty) x = 1 \n (emLty) x l 1 \n

The parser can decide that the asgn should be reduced to an expr and then to a
list, as in the parse tree on the left, or it can decide to use the following \n
immediately (“shift’”) and convert the whole thing to a list without the inter-
mediate rule, as in the tree on the right. Given the ambiguity, yacc chooses
to shift, since this is almost always the right thing to do with real grammars.
You should try to understand such messages, to be sure that yacc has made
the right decision.t Running yacc with the option -v produces a voluminous
file called y.output that hints at the origin of conflicts.

Exercise 8-5. As hoc3 stands, it’s legal to say

PI = 3
Is this a good idea? How would you change hoc3 to prohibit assignment to “‘con-
stants”? O

Exercise 8-6. Add the built-in function atan2(y,x), which returns the angle whose
tangent is y/x. Add the built-in rand(), which returns a floating point random vari-
able uniformly distributed on the interval (0,1). How do you have to change the gram-
mar to allow for built-ins with different numbers of arguments? O

Exercise 8-7. How would you add a facility to execute commands from within hoc,
similar to the ! feature of other UNIX programs? O

Exercise 8-8. Revise the code in math.c to use a table instead of the set of essentially
identical functions that we presented. O

Another digression on make
Since the program for hoc3 now lives on five files, not one, the makefile
is more complicated:

1 The yacc message “reduce/reduce conflict” indicates a serious problem, more often the symptom
of an outright error in the grammar than an intentional ambiguity.
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$ cat makefile
YFLAGS = -d # force creation of y.tab.h
OBJS = hoc.o init.o math.o symbol.o # abbreviation

hoc3: $(OBJS)
cc $(OBJS) -1lm -o hoc3

hoc.o: hoc.h
init.o symbol.o: hoc.h y.tab.h

pr:
@pr hoc.y hoc.h init.c math.c symbol.c makefile

clean:
rm -f $(OBJS) y.tab.[ch]
$

The YFLAGS = -4 line adds the option -d to the yacc command line gen-
erated by make; this tells yacc to produce the y.tab.h file of #define
statements. The OBJS=... line defines a shorthand for a construct to be used
several times subsequently. The syntax is not the same as for shell variables
— the parentheses are mandatory. The flag -1m causes the math library to be
searched for the mathematical functions.

hoc3 now depends on four .o files; some of the .o files depend on .h
files. Given these dependencies, make can deduce what recompilation is
needed after changes are made to any of the files involved. If you want to see
what make will do without actually running the processes, try

$ make -n

On the other hand, if you want to force the file times into a consistent state,
the -t (“‘touch’) option will update them without doing any compilation steps.
Notice that we have added not only a set of dependencies for the source
files but miscellaneous utility routines as well, all neatly encapsulated in one
place. By default, make makes the first thing listed in the makefile, but if
you name an item that labels a dependency rule, like symbol.o or pr, that
will be made instead. An empty dependency is taken to mean that the item is
never ‘‘up to date,” so that action will always be done when requested. Thus

1

$ make pr | lpr

produces the listing you asked for on a line printer. (The leading @ in “‘@pr”
suppresses the echo of the command being executed by make.) And

$ make clean

removes the yacc output files and the .o files.
This mechanism of empty dependencies in the makefile is often
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preferable to a shell file as a way to keep all the related computations in a sin-
gle file. And make is not restricted to program development — it is valuable
for packaging any set of operations that have time dependencies.

A digression on lex

The program lex creates lexical analyzers in a manner analogous to the
way that yacc creates parsers: you write a specification of the lexical rules of
your language, using regular expressions and fragments of C to be executed
when a matching string is found. lex translates that into a recognizer. lex
and yacc cooperate by the same mechanism as the lexical analyzers we have
already written. We are not going into any great detail on lex here; the fol-
lowing discussion is mainly to interest you in learning more. See the reference
manual for lex in Volume 2B of the UNIX Programmer’s Manual.

First, here is the lex program, from the file lex.1; it replaces the func-
tion yylex that we have used so far.

$ cat lex.1
%{
#include "hoc.h"
#include "y.tab.h"
extern int lineno;
%}
%%
[ \t] {51 /% skip blanks and tabs x/
[0-9]1+\.?1[0-91%\.[0-9]+ {

sscanf (yytext, "%1lf", &yylval.val); return NUMBER;
[a-zA-Z][a-2A-20-9]% {

Symbol s;

if ((s=lookup(yytext)) == 0)

s = install(yytext, UNDEF, 0.0);

yylval.sym = s;

return s->type == UNDEF ? VAR : s->type; }
\n { lineno++; return ‘\n’; } /% everything else #/
. { return yytext[0]; }

$
Each “rule” is a regular expression like those in egrep or awk, except tha
lex recognizes C-style escapes like \t and \n. The action is enclosed ir
braces. The rules are attempted in order, and constructs like * and + match a:
long a string as possible. If the rule matches the next part of the input, the
action is performed. The input string that matched is accessible in a le:
string called yytext.
The makefile has to be changed to use lex:
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$ cat makefile
YFLAGS = -d
OBJS = hoc.o lex.o init.o math.o symbol.o

hoc3: $(0OBJS)
cc $(OBJS) -1m -11 -o hoc3

hoc.o: hoc.h
lex.o init.o symbol.o: hoc.h y.tab.h

$

Again, make knows how to get from a .1 file to the proper .o; all it needs
from us is the dependency information. (We also have to add the lex library
-11 to the list searched by cc since the lex-generated recognizer is not self-
contained.) The output is spectacular and completely automatic:

$ make
yacc -d hoc.y

conflicts: 1 shift/reduce
cc -c y.tab.c

rm y.tab.c

mv y.tab.o hoc.o

lex 1lex.l1

cc -c lex.yy.c

rm lex.yy.c

mv lex.yy.o lex.o

cc -c init.c

cc -c math.c

cc -c symbol.c

cc hoc.o lex.o init.o math.o symbol.o -1lm -11 -o hoc3
$

If a single file is changed, the single command make is enough to make an
up-to-date version:

$ touch lex.1 Change modified-time of lex.1

$ make

lex lex.l1

cc -c lex.yy.c

rm lex.yy.c

mv lex.yy.o lex.o

cc hoc.o lex.o init.o math.o symbol.o -11 -1lm -o hoc3
$

We debated for quite a while whether to treat lex as a digression, to be
illustrated briefly and then dropped, or as the primary tool for lexical analysis
once the language got complicated. There are arguments on both sides. The
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main problem with lex (aside from requiring that the user learn yet another
language) is that it tends to be slow to run and to produce bigger and slower
recognizers than the equivalent C versions. It is also somewhat harder to
adapt its input mechanism if one is doing anything unusual, such as error
recovery or even input from files. None of these issues is serious in the con-
text of hoc. The main limitation is space: it takes more pages to describe the
lex version, so (regretfully) we will revert to C for subsequent lexical
analysis. It is a good exercise to do the lex versions, however.

Exercise 8-9. Compare the sizes of the two versions of hoc3. Hint: see size(l). O

8.4 Stage 4: Compilation into a machine

We are heading towards hoc5, an interpreter for a language with control
flow. hoc4 is an intermediate step, providing the same functions as hoc3, but
implemented within the interpreter framework of hoc5. We actually wrote
hoc4 this way, since it gives us two programs that should behave identically,
which is valuable for debugging. As the input is parsed, hoc4 generates code
for a simple computer instead of immediately computing answers. Once the
end of a statement is reached, the generated code is executed (“‘interpreted”)
to compute the desired result.

The simple computer is a stack machine: when an operand is encountered, it
is pushed onto a stack (more precisely, code is generated to push it onto a
stack); most operators operate on items on the top of the stack. For example,
to handle the assignment

X =2 %y

the following code is generated:

constpush Push a constant onto stack
2 ... the constant 2
varpush Push symbol table pointer onto stack
v ... for the variable y
eval Evaluate: replace pointer by value
mul Multiply top two items; product replaces them
varpush Push symbol table pointer onto stack
x ... for the variable x
assign Store value in variable, pop pointer
pop Clear top value from stack
STOP End of instruction sequence

When this code is executed, the expression is evaluated and the result is stored
in x, as indicated by the comments. The final pop clears the value off the
stack because it is not needed any longer.

Stack machines usually result in simple interpreters, and ours is no excep-
tion — it’s just an array containing operators and operands. The operators are
the machine instructions; each is a function call with its arguments, if any, fol-
lowing the instruction. Other operands may already be on the stack, as they
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were in the example above.

The symbol table code for hoc4 is identical to that for hoc3; the initializa-
tion in init.c and the mathematical functions in math.c are the same as
well. The grammar is the same as for hoc3, but the actions are quite dif-
ferent. Basically, each action generates machine instructions and any argu-
ments that go with them. For example, three items are generated for a VAR in
an expression: a varpush instruction, the symbol table pointer for the vari-
able, and an eval instruction that will replace the symbol table pointer by its
value when executed. The code for ‘#’ is just mul, since the operands for that
will already be on the stack.

$ cat hoc.y

%{

#include "hoc.h"

#define code2(c1,c2) code(c1); code(c2)

#define code3(c1,c2,c3) code(c1); code(c2); code(c3)

%}

%union {
Symbol *sym; /% symbol table pointer */
Inst #inst; /% machine instruction */

}

%token <sym> NUMBER VAR BLTIN UNDEF
%right ‘=*

%left ‘0=

%left I A

%left UNARYMINUS

%right *°’ /% exponentiation */
%%
list: /% nothing =/

list ‘\n’

list asgn ‘\n’ { code2(pop, STOP); return 1; }
list expr ‘\n’ { code2(print, STOP); return 1; }
list error ‘\n’ { yyerrok; }

asgn: VAR ‘=’ expr { code3(varpush,(Inst)$1,assign); }
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expr: NUMBER { code2(constpush, (Inst)$1); 1}
VAR { code3(varpush, (Inst)$1, eval); }
asgn

BLTIN ‘(’ expr ’)’ { code2(bltin, (Inst)$1->u.ptr); }
'(' expr ')'

expr ’‘+’ expr { code(add); }
expr ‘-’ expr { code(sub); }
expr ‘#’ expr { code(mul); }
expr ‘/’ expr { code(div); }
expr ‘"’ expr { code(power); }

-’ expr %prec UNARYMINUS { code(negate); }
9

%%
/% end of grammar */

Inst is the data type of a machine instruction (a pointer to a function return-
ing an int), which we will return to shortly. Notice that the arguments to
code are function names, that is, pointers to functions, or other values that
are coerced to function pointers.

We have changed main somewhat. The parser now returns after each
statement or expression; the code that it generated is executed. yyparse
returns zero at end of file.

main(argc, argv) /% hocd =/
char xargv[];

{
int fpecatch();
progname = argv([0];
init();
setjmp(begin);
signal(SIGFPE, fpecatch);
for (initcode(); yyparse(); initcode())

execute(prog);

return 0;

}

The lexical analyzer is only a little different. The main change is that
numbers have to be preserved, not used immediately. The easiest way to do
this is to install them in the symbol table along with the variables. Here is the
changed part of yylex:
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yylex() /% hoc4d x/
if (c == ’.’ 1l isdigit(c)) { /% number #/
double d;

ungetc(c, stdin);

scanf("%1f", &4);

yylval.sym = install("", NUMBER, d4);
return NUMBER;

Each element on the interpreter stack is either a floating point value or a
pointer to a symbol table entry; the stack data type is a union of these. The
machine itself is an array of pointers that point either to routines like mul that
perform an operation, or to data in the symbol table. The header file hoc.h
has to be augmented to include these data structures and function declarations
for the interpreter, so they will be known where necessary throughout the pro-
gram. (By the way, we chose to put all this information in one file instead of
two. In a larger program, it might be better to divide the header information
into several files so that each is included only where really needed.)

$ cat hoc.h
typedef struct Symbol { /% symbol table entry x/

char *name ;

short type; /+ VAR, BLTIN, UNDEF x/

union {
double val; /% if VAR =/
double (x*ptr)(); /% if BLTIN =/

} u;

struct Symbol *next; /% to link to another */

} Symbol;

Symbol #install(), *lookup();

typedef union Datum { /+ interpreter stack type */
double val;
Symbol *sym;

} Datum;

extern Datum pop();

typedef int (*Inst)(); /% machine instruction =/
#define STOP (Inst) O

extern Inst progl];

extern eval(), add(), sub(), mul(), div(), negate(), power()
extern assign(), bltin(), varpush(), constpush(), print();
$

The routines that execute the machine instructions and manipulate the stack
are kept in a new file called code.c. Since it is about 150 lines long, we will
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show it in pieces.

$ cat code.c
#include "hoc.h"
#include "y.tab.h"

#define NSTACK 256
static Datum stack[NSTACK]; /* the stack =/
static Datum *stackp; /% next free spot on stack */

#define NPROG 2000

Inst prog[NPROG] ; /% the machine =/

Inst *progp; /% next free spot for code generation x/
Inst *pC; /% program counter during execution #/
initcode() /% initialize for code generation */

{

stackp = stack;
progp = prog;

The stack is manipulated by calls to push and pop:

push(d) /% push d onto stack #/
Datum d;
{
if (stackp >= &stack[NSTACK])
execerror("stack overflow", (char =) 0);
#stackp++ = d4;

Datum pop() /% pop and return top elem from stack =/
{
if (stackp <= stack)
execerror("stack underflow", (char =) 0);
return x--stackp;

}

The machine is generated during parsing by calls to the function code,
which simply puts an instruction into the next free spot in the array prog. It
returns the location of the instruction (which is not used in hoc4).
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Inst *code(f) /% install one instruction or operand x/

Inst £,
{
Inst *oprogp = progp;
if (progp >= &prog[NPROG])
execerror("program too big", (char %) 0);
#*progp++ = f;
return oprogp;
}

Execution of the machine is simple; in fact, it’s rather neat how small the
routine is that ‘“‘runs’ the machine once it’s set up:

execute(p) /% run the machine #/
Inst #*p;

{
for (pc = p; #*pc != STOP; )

(% (*pc++))();
}

Each cycle executes the function pointed to by the instruction pointed to by the
program counter pc, and increments pc so it’s ready for the next instruction.
An instruction with opcode STOP terminates the loop. Some instructions, such
as constpush and varpush, also increment pc to step over any arguments
that follow the instruction.

constpush() /% push constant onto stack */
{
Datum d;
d.val = ((Symbol #)#*pc++)->u.val;
push(d);
}
varpush() /% push variable onto stack */
{
Datum d;
d.sym = (Symbol #)(*pc++);
push(d);
}

The rest of the machine is easy. For instance, the arithmetic operations are
all basically the same, and were created by editing a single prototype. Here is
add:
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add() /% add top two elems on stack */
{
Datum d1, d42;
d2 = pop();
d1 = pop();
d1.val += d2.val;
push(d1);
}
The remaining routines are equally simple.
eval() /+ evaluate variable on stack #/
{
Datum d;
d = pop();

if (d.sym->type == UNDEF)
execerror("undefined variable", d.sym->name);
d.val = d.sym->u.val;

push(d);
}
assign() /% assign top value to next value */
{
Datum 41, d2;
d1 = popl();
d2 = pop();
if (d1.sym->type != VAR && d1.sym->type != UNDEF)
execerror("assignment to non-variable",
d1.sym->name) ;
d1.sym->u.val = d2.val;
d1.sym->type = VAR;
push(d2);
}
print() /% pop top value from stack, print it */
{
Datum d;
d = pop();
printf("\t%.8g\n", d.val);
}
bltin() /% evaluate built-in on top of stack #/
{
Datum d;
d = pop();
d.val = (#(double (*)())(#pc++))(d.val);
push(d);
}

The hardest part is the cast in bltin, which says that *pc should be cast to
“pointer to function returning a double,” and that function executed with
d.val as argument.

The diagnostics in eval and assign should never occur if everything is
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working properly; we left them in in case some program error causes the stack
to be curdled. The overhead in time and space is small compared to the bene-
fit of detecting the error if we make a careless change in the program. (We
did, several times.)

C’s ability to manipulate pointers to functions leads to compact and efficient
code. An alternative, to make the operators constants and combine the seman-
tic functions into a big switch statement in execute, is straightforward and
is left as an exercise.

A third digression on make

As the source code for hoc grows, it becomes more and more valuable to
keep track mechanically of what has changed and what depends on that. The
beauty of make is that it automates jobs that we would otherwise do by hand
(and get wrong sometimes) or by creating a specialized shell file.

We have made two improvements to the makefile. The first is based on
the observation that although several files depend on the yacc-defined con-
stants in y.tab.h, there’s no need to recompile them unless the constants
change — changes to the C code in hoc.y don’t affect anything else. In the
new makefile the .o files depend on a new file x.tab.h that is updated
only when the contents of y.tab.h change. The second improvement is to
make the rule for pr (printing the source files) depend on the source files, so
that only changed files are printed.

The first of these changes is a great time-saver for larger programs when
the grammar is static but the semantics are not (the usual situation). The
second change is a great paper-saver.

Here is the new makefile for hoc4:

YFLAGS = -d
OBJS = hoc.o code.o init.o math.o symbol.o

hoc4: $(OBJS)
cc $(OBJS) -1lm -o hoc4

hoc.o code.o init.o symbol.o: hoc.h
code.o init.o symbol.o: x.tab.h

x.tab.h: y.tab.h
-cmp -s x.tab.h y.tab.h |! cp y.tab.h x.tab.h

pr: hoc.y hoc.h code.c init.c math.c symbol.c
@pr $7?
@touch pr

clean:

rm -f $(OBJS) [xy].tab.[ch]
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The ‘-’ before cmp tells make to carry on even if the cmp fails; this permits
the process to work even if x.tab.h doesn’t exist. (The -s option causes
cmp to produce no output but set the exit status.) The symbol $? expands into
the list of items from the rule that are not up to date. Regrettably, make’s
notational conventions are at best loosely related to those of the shell.

To illustrate how these operate, suppose that everything is up to date.
Then

$ touch hoc.y Change date of hoc.y
$ make
yacc -d hoc.y

conflicts: 1 shift/reduce

cc -c y.tab.c

rm y.tab.c

mv y.tab.o hoc.o

cmp -s x.tab.h y.tab.h ii cp y.tab.h x.tab.h

cc hoc.o code.o init.o math.o symbol.o -1lm -o hoc4
$ make -n pr Print changed files
pr hoc.y

touch pr

$

Notice that nothing was recompiled except hoc.y, because the y.tab.h file
was the same as the previous one.

Exercise 8-10. Make the sizes of stack and prog dynamic, so that hoc4 never runs
out of space if memory can be obtained by calling malloc. O

Exercise 8-11. Modify hoc4 to use a switch on the type of operation in execute
instead of calling functions. How do the versions compare in lines of source code and

execution speed? How are they likely to compare in ease of maintenance and growth?
m]

8.5 Stage S: Control flow and relational operators

This version, hoc5, derives the benefit of the effort we put into making an
interpreter. It provides if-else and while statements like those in C, state-
ment grouping with { and }, and a print statement. A full set of relational
operators is included (>, >=, etc.), as are the AND and OR operators && and
i 1. (These last two do not guarantee the left-to-right evaluation that is such
an asset in C; they evaluate both conditions even if it is not necessary.)

The grammar has been augmented with tokens, non-terminals, and produc-
tions for if, while, braces, and the relational operators. This makes it quite
a bit longer, but (except possibly for the if and while) not much more com-
plicated:
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$ cat hoc.y

%{
#include "hoc.h"
#define code2(c1,c2) code(c1); code(c2)

#define code3(c1,c2,c3) code(c1); code(c2); code(c3)
%}
%union {
Symbol *sym; /+* symbol table pointer */
Inst *inst; /% machine instruction =/
}
%token <sym> NUMBER PRINT VAR BLTIN UNDEF WHILE IF ELSE
%type <inst> stmt asgn expr stmtlist cond while if end
%right ‘="
%left OR
%left AND
%left GT GE LT LE EQ NE
%left T+ =t
%left ‘w0
%left UNARYMINUS NOT
%right *°°
%%
list: /% nothing =/
list ‘\n’
list asgn ‘\n’ { code2(pop, STOP); return 1; }
list stmt ‘\n’ { code(STOP); return 1; }
list expr ‘\n’ { code2(print, STOP); return 1; }
{

list error ‘\n’ yyerrok; }
9
asgn: VAR ‘=’ expr { $$=$3; code3(varpush, (Inst)$1,assign); }
9
stmt: expr { code(pop); }
| PRINT expr { code(prexpr); $$ = $2; }
! while cond stmt end ({
($1)[1] = (Inst)$3; /% body of loop */
($1)[2] = (Inst)s$4; } /% end, if cond fails %/
! if cond stmt end { /% else-less if x/
($1)[1] = (Inst)$3; /% thenpart =/
($1)[3] = (Inst)s$4; } /% end, if cond fails =/
! if cond stmt end ELSE stmt end { /x if with else %/
($1)[1] = (Inst)$3; /% thenpart */
($1)[2] = (Inst)$6; /% elsepart =/
($1)[3] = (Inst)$7; } /% end, if cond fails #/
! ’{’ stmtlist ’}’ { $3 = $2; }
9
cond: ‘(’ expr ’)’ { code(STOP); $$ = $2; }

while: WHILE { $$ = code3(whilecode, STOP, STOP); }
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if: IF { $$=code(ifcode); code3(STOP, STOP, STOP); 1}
5

end: /+ nothing */ { code(STOP); $$ = progp; }
H

stmtlist: /% nothing */ { $$ = progp; }

stmtlist ‘\n’
stmtlist stmt

.
’

expr: NUMBER { $$ = code2(constpush, (Inst)$1); }
i VAR { $$ = code3(varpush, (Inst)$1, eval); }
i asgn
1
1

BLTIN ‘(’ expr ‘)’
{ $$ = $3; code2(bltin,(Inst)$1->u.ptr); }

expr AND expr
expr OR expr
NOT expr

code(and); }
code(or); }
$$ = $2; code(not); }

I (" expr )’ { $$ = $2; }

| expr ’+’ expr { code(add); }

| expr ‘-’ expr { code(sub); }

| expr ’‘+’ expr { code(mul); }

| expr ’/’ expr { code(div); }

i expr ‘"’ expr { code (power); }
| ’-’ expr ‘%prec UNARYMINUS { $$ = $2; code(negate); }
| expr GT expr { code(gt); }

| expr GE expr { code(ge); }

| expr LT expr { code(lt); }

| expr LE expr { code(le); }

| expr EQ expr { code(eq); }

| expr NE expr { code(ne); }

i {

H {

H {

%%

The grammar has five shift/reduce conflicts, all like the one mentioned in
hoc3.

Notice that STOP instructions are now generated in several places to ter-
minate a sequence; as before, progp is the location of the next instruction that
will be generated. When executed these STOP instructions will terminate the
loop in execute. The production for end is in effect a subroutine, called
from several places, that generates a STOP and returns the location of the
instruction that follows it.

The code generated for while and if needs particular study. When the
keyword while is encountered, the operation whilecode is generated, and
its position in the machine is returned as the value of the production

while: WHILE
At the same time, however, the two following positions in the machine are also

reserved, to be filled in later. The next code generated is the expression that
makes up the condition part of the while. The value returned by cond is the
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beginning of the code for the condition. After the whole while statement has
been recognized, the two extra positions reserved after the whilecode
instruction are filled with the locations of the loop body and the statement that
follows the loop. (Code for that statement will be generated next.)

i while cond stmt end {

($1)[1] = (Inst)$3; /+% body of loop */
($1)[2] (Inst)$4; } /% end, if cond fails #/

n

$1 is the location in the machine at which whilecode is stored; therefore,
($1)[1] and ($1)[2] are the next two positions.
A picture might make this clearer:

whilecode

cond

STOP
body

STOP
next stmt

The situation for an if is similar, except that three spots are reserved, for
the then and else parts and the statement that follows the if. We will
return shortly to how this operates.

Lexical analysis is somewhat longer this time, mainly to pick up the addi-
tional operators:
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yylex() /% hoc5 #/
switch (c) {
case ‘>’ return follow(’=’, GE,
case ‘<’ return follow(’=’, LE,
case ‘=’ return follow(’=’, EQ,
case ‘1’: return follow(’=’, NE,
case ‘1’ return follow(’!’, OR,
case ‘&’: return follow(‘&’, AND,
case ‘\n’: lineno++; return ‘\n’;
default: return c;
}

}

CHAPTER 8

GT);
LT);
I=I);
NOT) ;
'=');

'&');

follow looks ahead one character, and puts it back on the input with ungetc
if it was not what was expected.

follow(expect, ifyes, ifno) /% look ahead for >=, etc. %/

{

}

int c

= getchar();

if (c == expect)

return ifyes;

ungetc(c, stdin);
return ifno;

There are more function declarations in hoc.h — all of the relationals, for
instance — but it’s otherwise the same idea as in hoc4. Here are the last few

lines:

$ cat hoc.h

typedef int (#Inst)(); /* machine instruction */

#define STOP

extern
extern
extern
extern
extern
extern

$

(Inst) O

Inst prog[], #progp, *code();

eval(), add(), sub(), mul(), div(), negate(), power();
assign(), bltin(), varpush(), constpush(), print();
prexpr();

gt(), lt()y eq()s ge(),

ifcode(), whilecode();

le(), ne(), and(), or(), not();

Most of code. c is the same too, although there are a lot of obvious new rou-
tines to handle the relational operators. The function le (“less than or equal
to”) is a typical example:
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le()
{
Datum 41, d2;
d2 = pop();
d1 = pop();
d1.val = (double)(d1.val <= d2.val);
push(d1);
}

The two routines that are not obvious are whilecode and ifcode. The
critical point for understanding them is to realize that execute marches along
a sequence of instructions until it finds a STOP, whereupon it returns. Code
generation during parsing has carefully arranged that a STOP terminates each
sequence of instructions that should be handled by a single call of execute.
The body of a while, and the condition, then and else parts of an if are
all handled by recursive calls to execute that return to the parent level when
they have finished their task. The control of these recursive tasks is done by
code in whilecode and ifcode that corresponds directly to while and if
statements.

whilecode()

{
Datum d4d;
Inst #savepc = pcC; /% loop body =/
execute(savepc+2); /% condition */
d = pop();
while (d.val) {
execute(*((Inst ##)(savepc))); /% body =/
execute(savepc+2);
d = popl();
}
pc = #((Inst #*)(savepc+1)); /# next statement =/
}

Recall from our discussion earlier that the whilecode operation is followed
by a pointer to the body of the loop, a pointer to the next statement, and then
the beginning of the condition part. When whilecode is called, pc has
already been incremented, so it points to the loop body pointer. Thus pc+1
points to the following statement, and pc+2 points to the condition.

ifcode is very similar; in this case, upon entry pc points to the then part,
pc+1 to the else, pc+2 to the next statement, and pc+3 is the condition.
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ifcode()

{
Datum d;
Inst #savepc = pc; /% then part */
execute(savepc+3); /+ condition =/
d = pop();
if (d.val)

execute(*((Inst #x)(savepc)));

else if (*((Inst #%)(savepc+1))) /* else part? =/
execute(*((Inst *#)(savepc+1)));

pc = *((Inst ##)(savepc+2)); /% next stmt */

}

The initialization code in init.c is augmented a little as well, with a table
of keywords that are stored in the symbol table along with everything else:

$ cat init.c

static struct { /* Keywords x/
char *name;
int kval;
} keywords[] = {
"if", IF,
"else", ELSE,
"while", WHILE,
"print", PRINT,
0, 0,
}s

We also need one more loop in init, to install keywords.

for (i = 0; keywords[i].name; i++)
install(keywords[i].name, keywords[i].kval, 0.0);

No changes are needed in any of the symbol table management; code.c
contains the routine prexpr, which is called when an statement of the form
print expr is executed.

prexpr() /% print numeric value %/
{

Datum d;

4 = pop();

printf("%.8g\n", d.val);
}

This is not the print function that is called automatically to print the final

result of an evaluation; that one pops the stack and adds a tab to the output.
hoc5 is by now quite a serviceable calculator, although for serious pro-

gramming, more facilities are needed. The following exercises suggest some
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possibilities.

Exercise 8-12. Modify hoc5 to print the machine it generates in a readable form for
debugging. O

Exercise 8-13. Add the assignment operators of C, such as +=, %=, etc., and the incre-
ment and decrement operators ++ and --. Modify && and i1 so they guarantee left-
to-right evaluation and early termination, as in C. O

Exercise 8-14. Add a for statement like that of C to hoc5. Add break and
continue. O

Exercise 8-15. How would you modify the grammar or the lexical analyzer (or both) of
hoc5 to make it more forgiving about the placement of newlines? How would you add
semicolon as a synonym for newline? How would you add a comment convention?
What syntax would you use? O

Exercise 8-16. Add interrupt handling to hoc5, so that a runaway computation can be
stopped without losing the state of variables already computed. O

Exercise 8-17. It is a nuisance to have to create a program in a file, run it, then edit
the file to make a trivial change. How would you modify hoc5 to provide an edit com-

mand that would cause you to be placed in an editor with a copy of your hoc program
already read in? Hint: consider a text opcode. O

8.6 Stage 6: Functions and procedures; input/output

The final stage in the evolution of hoc, at least for this book, is a major
increase in functionality: the addition of functions and procedures. We have
also added the ability to print character strings as well as numbers, and to read
values from the standard input. hoc6 also accepts filename arguments, includ-
ing the name ‘““-” for the standard input. Together, these changes add 235
lines of code, bringing the total to about 810, but in effect convert hoc from a
calculator into a programming language. We won’t show every line here;
Appendix 3 is a listing of the entire program so you can see how the pieces fit
together.

In the grammar, function calls are expressions; procedure calls are state-
ments. Both are explained in detail in Appendix 2, which also has some more
examples. For instance, the definition and use of a procedure for printing all
the Fibonacci numbers less than its argument looks like this:
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$ cat fib
proc fib() {
a=20
b =1
while (b < $1) {
print b
c =D
b = a+b
a=c¢
}
print "\n"
}
$ hocé fib -
£ib(1000)

CHAPTER 8

112358 13 21 34 55 89 144 233 377 610 987

$ cat fac
func fac() {

€699

is the standard input.

if ($1 <= 0) return 1 else return $1 * fac($1-1)

}
$ hoc6é fac -
fac(0)

1
fac(7)

5040
fac(10)

3628800

Arguments are referenced within a function or procedure as $1, etc., as in the
shell, but it is legal to assign to them as well. Functions and procedures are
recursive, but only the arguments are local variables; all other variables are
global, that is, accessible throughout the program.

hoc distinguishes functions from procedures because doing so gives a level

of checking that is valuable in a stack implementation. It is too easy to forget
a return or add an extra expression and foul up the stack.

There are a fair number of changes to the grammar to convert hoc5 into

hocé, but they are localized. New tokens and non-terminals are needed, and
the %union declaration has a new member to hold argument counts:
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$ cat hoc.y

e o e

%union {
Symbol #sym; /+ symbol table pointer #/
Inst #inst; /% machine instruction */
int narg; /+ number of arguments */
}

%token <sym> NUMBER STRING PRINT VAR BLTIN UNDEF WHILE IF ELSE
%token <sym> FUNCTION PROCEDURE RETURN FUNC PROC READ

%token <narg> ARG

%type <inst> expr stmt asgn prlist stmtlist

%type <inst> cond while if begin end

%type <sym> procname

%type <narg> arglist

list: /% nothing %/

list ‘\n’

list defn ‘\n’

list asgn ‘\n’ { code2(pop, STOP); return 1; }
list stmt ‘\n’ { code(STOP); return 1; }

list expr ‘\n’ { code2(print, STOP); return 1; }
list error ‘\n’ { yyerrok; }

asgn: VAR ‘=’ expr { code3(varpush,(Inst)$1,assign); $$=$3; }
| ARG ‘=’ expr
{ defnonly("$"); code2(argassign,(Inst)$1); $$=$3;}

stmt: expr { code(pop); }
RETURN { defnonly("return"); code(procret); }
RETURN expr

{ defnonly("return"); $$=$2; code(funcret); 1}
PROCEDURE begin ‘(’ arglist ’)~’

{ $$ = $2: code3(call, (Inst)$1, (Inst)$4); }
! PRINT prlist { $$ = $2; }

expr: NUMBER { $$ code2(constpush, (Inst)$1); 1}
VAR { $3 code3(varpush, (Inst)$1, eval); }
ARG { defnonly("$"); $$ = code2(arg, (Inst)$1); }
asgn
FUNCTION begin ‘(’ arglist ‘)’
{ $$ = $2; code3(call,(Inst)$1,(Inst)%$4); }
! READ ’“(’ VAR ‘)’ { $$ = code2(varread, (Inst)$3); }

begin: /% nothing */ { $$ = progp; }
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prlist: expr

STRING

prlist ’,’ expr
prlist ’,’ STRING

code(prexpr); }

$$ = code2(prstr, (Inst)$1); }
code(prexpr); }

code2(prstr, (Inst)$3); }

{
{
{
{

defn: FUNC procname { $2->type=FUNCTION; indef=1; }
‘(’ )’ stmt { code(procret); define($2); indef=0; }
i PROC procname { $2->type=PROCEDURE; indef=1; }
‘(’ )’ stmt { code(procret); define($2); indef=0; }
H
procname: VAR

| FUNCTION
{ PROCEDURE
5
arglist: /» nothing »/ { $$ = 0; }
| expr { $8$ = 1; }
| arglist ’,’ expr { $$ = $1 + 1; }

%%

The productions for arglist count the arguments. At first sight it might
seem necessary to collect arguments in some way, but it’s not, because each
expr in an argument list leaves its value on the stack exactly where it’s
wanted. Knowing how many are on the stack is all that’s needed.

The rules for defn introduce a new yacc feature, an embedded action. It
is possible to put an action in the middle of a rule so that it will be executed
during the recognition of the rule. We use that feature here to record the fact
that we are in a function or procedure definition. (The alternative is to create
a new symbol analogous to begin, to be recognized at the proper time.) The
function defnonly prints a warning message if a construct occurs outside of
the definition of a function or procedure when it shouldn’t. There is often a
choice of whether to detect errors syntactically or semantically; we faced one
earlier in handling undefined variables. The defnonly function is a good
example of a place where the semantic check is easier than the syntactic one.

defnonly(s) /% warn if illegal definition */
char xs;

{
if (!indef)

execerror(s, "used outside definition");

}

The variable indef is declared in hoc.y, and set by the actions for defn.

The lexical analyzer is augmented by tests for arguments — a $ followed by
a number — and for quoted strings. Backslash sequences like \n are inter-
preted in strings by a function backslash.
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yylex() /% hoc6 =/

if (c == ’$’) { /% argument? =/
int n = 0;
while (isdigit(c=getc(fin)))

n=10 *n+c - ‘0"
ungetc(c, fin);
if (n == 0)
execerror("strange $...", (char #)0);

yylval.narg = n;
return ARG;

}
if (¢ == ’"’) { /% quoted string =/
char sbuf[100], #*p, #emalloc();
for (p = sbuf; (c=getc(fin)) != *""’; p++) {
if (¢ == ’\n’ i ¢ == EOF)
execerror("missing quote”, "");
if (p >= sbuf + sizeof(sbuf) - 1) {
*p = ‘\0’;
execerror("string too long", sbuf)
}
*p = backslash(c);
}
*p = 03
yylval.sym = (Symbol #)emalloc(strlen(sbuf)+1);
strcpy(yylval.sym, sbuf);
return STRING;
}
backslash(c) /+ get next char with \’s interpreted #/
int c;
{
char #index(); /# ‘strchr()’ in some systems #/
static char transtab[] = "b\bf\fn\nr\rt\t";
if (c = ’"\\")
return c;
c = getc(fin);
if (islower(c) && index(transtab, c))
return index(transtab, c)[1];
return c;
}

A lexical analyzer is an example of a finite state machine, whether written in C
or with a program generator like 1ex. Our ad hoc C version has grown fairly
complicated; for anything beyond this, lex is probably better, both in size of
source code and ease of change.

Most of the other changes are in code.c, with some additions of function
names to hoc.h. The machine is the same as before, except that it has been
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augmented with a second stack to keep track of nested function and procedure
calls. (A second stack is easier than piling more things into the existing one.)
Here is the beginning of code.c:

$ cat code.c
#define NPROG 2000

Inst prog[NPROG] ; /% the machine #/

Inst *progp; /+ next free spot for code generation #/
Inst #pC} /% program counter during execution %/
Inst *progbase = prog; /% start of current subprogram %/

int returning; /% 1 if return stmt seen */

typedef struct Frame { /# proc/func call stack frame =/

Symbol #sp; /% symbcl table entry =/

Inst *retpc; /#* where to resume after return =/
Datum #*argn; /% n-th argument on stack #/

int nargs; /% number of arguments =/

} Frame;

#define NFRAME 100

Frame frame[ NFRAME] ;

Frame *fp; /+ frame pointer =/

initcode() {
progp = progbase;
stackp = stack;
fp = frame;
returning = 0;

Since the symbol table now holds pointers to procedures and functions, and
to strings for printing, an addition is made to the union type in hoc.h:

$ cat hoc.h
typedef struct Symbol { /# symbol table entry %/

char *name ;
short type;
union {
double vwval; /% VAR #/
double (#*ptr)(); /% BLTIN #/
int (#defn) (); /% FUNCTION, PROCEDURE #*/
char *#str; /% STRING =/
} oug

struct Symbol *next; /#* to link to another x/
} Symbol;

$

During compilation, a function is entered into the symbol table by define,
which stores its origin in the table and updates the next free location after the
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generated code if the compilation is successful.

define(sp) /+ put func/proc in symbol table */
Symbol *sp;
{
sp->u.defn = (Inst)progbase; /% start of code */
progbase = progp; /+ next code starts here */
}

When a function or procedure is called during execution, any arguments
have already been computed and pushed onto the stack (the first argument is
the deepest). The opcode for call is followed by the symbol table pointer
and the number of arguments. A Frame is stacked that contains all the
interesting information about the routine — its entry in the symbol table,
where to return after the call, where the arguments are on the expression
stack, and the number of arguments that it was called with. The frame is
created by call, which then executes the code of the routine.

call() /% call a function #/
{
Symbol #sp = (Symbol #*)pc[0]; /% symbol table entry */
/% for function =/
if (fp++ >= &frame[NFRAME-1])
execerror(sp->name, "call nested too deeply");
fp->sp = sp;
fp->nargs = (int)pcl1];
fp->retpc = pc + 2;
fp->argn = stackp - 1; /% last argument */
execute(sp->u.defn);
returning = 0;

}

This structure is illustrated in Figure 8.2.
Eventually the called routine will return by executing either a procret or
a funcret:

funcret() /% return from a function =/
{
Datum d;
if (fp->sp->type == PROCEDURE)
execerror(fp->sp->name, "(proc) returns value");
d = pop(); /% preserve function return value %/
ret();
push(d);
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Machine Frame Stack
«=— stackp
call argn arg3
pCc—= *Sym nargs arg2
nargs retpc arg1
Sp
*defn
Figure 8.2: Data structures for procedure call
procret() /% return from a procedure */
{
if (fp->sp->type == FUNCTION)
execerror (fp->sp->name,
"(func) returns no value");
ret();
}

The function ret pops the arguments off the stack, restores the frame pointer
fp, and sets the program counter.

ret() /+ common return from func or proc */
{

int i;

for (i = 0; i < fp->nargs; i++)

pop(); /% pop arguments */

pc = (Inst #)fp->retpc;

--fp;

returning = 1;

}

Several of the interpreter routines need minor fiddling to handle the situa-
tion when a return occurs in a nested statement. This is done inelegantly but
adequately by a flag called returning, which is true when a return state-
ment has been seen. ifcode, whilecode and execute terminate early if
returning is set; call resets it to zero.
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ifcode()

{
Datum d;
Inst #savepc = pcC; /% then part */
execute(savepc+3); /% condition */
d = popl();
if (d.val)

execute(*((Inst ##)(savepc)));

else if (*((Inst #%)(savepc+1))) /% else part? =/
execute(#((Inst #*)(savepc+1)));

if (lreturning)
pc = #((Inst ##)(savepc+2)); /#* next stmt */

}
whilecode()
{
Datum d;
Inst #*savepc = pcC;
execute(savepc+2); /% condition =/
d = popl();
while (d.val) {
execute(*((Inst #x%)(savepc))); /% body */
if (returning)
break;
execute(savepc+2); /% condition %/
d = pop();
}
if (l!returning)
pc = *((Inst ##)(savepc+1)); /+* next stmt =/
}
execute(p)
Inst *p;
{
for (pc = p; #pc != STOP && lreturning; )
(% (*pc++))();
}

Arguments are fetched for use or assignment by getarg, which does the
correct arithmetic on the stack:

double x*getarg() /% return pointer to argument */
{
int nargs = (int) #pc++;
if (nargs > fp->nargs)
execerror (fp->sp->name, "not enough arguments");
return &fp->argn[nargs - fp->nargs].val;
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arg() /% push argument onto stack #/

{
Datum d;
d.val = »getarg();
push(d);
}
argassign() /# store top of stack in argument */
{
Datum d;
d = popl();
push(d); /+ leave value on stack */
#getarg() = d.val;
}

Printing of strings and numbers is done by prstr and prexpr.

prstr() /% print string value %/
{

printf("%s", (char #) #*pc++);
}
prexpr() /% print numeric value %/
{

Datum d;

d = pop();

printf("%.8g ", d.val);
}

Variables are read by a function called varread. It returns 0 if end of file
occurs; otherwise it returns 1 and sets the specified variable.
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varread() /% read into variable =/
{

Datum 4d;

extern FILE xfin;

Symbol #var = (Symbol #) #pc++;

Again:
switch (fscanf(fin, "%1lf", &var->u.val)) {
case EOF:
if (moreinput())
goto Again;
d.val = var->u.val = 0.0;
break;
case 0:
execerror("non-number read into", var->name
break;
default:
d.val = 1.0;
break;
}
var->type = VAR;
push(d);

}

If end of file occurs on the current input file, varread calls moreinput,
which opens the next argument file if there is one. moreinput reveals more
about input processing than is appropriate here; full details are given in Appen-
dix 3.

This brings us to the end of our development of hoc. For comparison pur-
poses, here is the number of non-blank lines in each version:

hoc1 59
hoc2 94
hoc3 248 (lex version 229)

hoc4 396
hoc5 574
hocé 809

Of course the counts were computed by programs:
$ sed ‘/"$/d’ ‘pick *.[chyl]‘' | wc -1

The language is by no means finished, at least in the sense that it’s still easy to
think of useful extensions, but we will go no further here. The following exer-
cises suggest some of the enhancements that are likely to be of value.

Exercise 8-18. Modify hoc6 to permit named formal parameters in subroutines as an
alternative to $1, etc. O

Exercise 8-19. As it stands, all variables are global except for parameters. Most of the
mechanism for adding local variables maintained on the stack is already present. One
approach is to have an auto declaration that makes space on the stack for variables
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listed; variables not so named are assumed to be global. The symbol table will also
have to be extended, so that a search is made first for locals, then for globals. How
does this interact with named arguments? O

Exercise 8-20. How would you add arrays to hoc? How should they be passed to func-
tions and procedures? How are they returned? O

Exercise 8-21. Generalize string handling, so that variables can hold strings instead of
numbers. What operators are needed? The hard part of this is storage management:
making sure that strings are stored in such a way that they are freed when they are not
needed, so that storage does not leak away. As an interim step, add better facilities for
output formatting, for example, access to some form of the C printf statement. O

8.7 Performance evaluation

We compared hoc to some of the other UNIX calculator programs, to get a
rough idea of how well it works. The table below should be taken with a grain
of salt, but it does indicate that our implementation is reasonable. All times
are in seconds of user time on a PDP-11/70. There were two tasks. The first is
computing Ackermann’s function ack(3,3). This is a good test of the
function-call mechanism; it requires 2432 calls, some nested quite deeply.

func ack() {
if ($1 == 0) return $2+1
if ($2 == 0) return ack($1-1, 1)
return ack($1-1, ack($1, $2-1))
}
ack(3,3)

The second test is computing the Fibonacci numbers with values less than 1000
a total of one hundred times; this involves mostly arithmetic with an occasional
function call.

proc fib() {

a=20
b =1
while (b < $1) {
c =Db
b = a+b
a=c¢
}
}
i=1
while (i < 100) {
£ib(1000)
i=1i4+1
}

The four languages were hoc, bc(1), bas (an ancient BASIC dialect that
only runs on the PDP-11), and C (using double’s for all variables).
The numbers in Table 8.1 are the sum of the user and system CPU time as
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Table 8.1: Seconds of user time (pDP-11/70)
program ack(3,3) 100X £ib(1000)
hoc 5.5 5.0
bas 1.3 0.7
bc 39.7 14.9
C <0.1 <0.1

measured by time. It is also possible to instrument a C program to determine
how much of that time each function uses. The program must be recompiled
with profiling turned on, by adding the option -p to each C compilation and
load. If we modify the makefile to read

hocé6: $(OBJS)
cc $(CFLAGS) $(OBJS) -1lm -o hocé

so that the cc command uses the variable CFLAGS, and then say

$ make clean; make CFLAGS=-p

the resulting program will contain the profiling code. When the program runs,
it will leave a file called mon.out of data that is interpreted by the program
prof.

To illustrate these notions briefly, we made a test on hoc6é with the
Fibonacci program above.

$ hoc6 <fibtest Run the test
$ prof hoc6 | sed 15q Analyze
name %time cumsecs #call ms/call

_pop 15.6 0.85 32182 0.03
_push 14.3 1.63 32182 0.02

mcount 11.3 2.25

csv 10.1 2.80

cret 8.8 3.28
_assign 8.2 3.73 5050 0.09
_eval 8.2 4.18 8218 0.05
_execute 6.0 4.51 3567 0.09
_varpush 5.9 4.83 13268 0.02
_1t 2.7 4.98 1783 0.08
_constpu 2.0 5.09 497 0.22
_add 1.7 5.18 1683 0.05
_getarg 1.5 5.26 1683 0.05
_yyparse 0.6 5.30 3 11.11

$

The measurements obtained from profiling are just as subject to chance
fluctuations as are those from time, so they should be treated as indicators,
not absolute truth. The numbers here do suggest how to make hoc faster,
however, if it needs to be. About one third of the run time is going into
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pushing and popping the stack. The overhead is larger if we include the times
for the C subroutine linkage functions csv and cret. (mcount is a piece of
the profiling code compiled in by cc -p.) Replacing the function calls by mac-
ros should make a noticeable difference.

To test this expectation, we modified code.c, replacing calls to push and
pop with macros for stack manipulation:

#define push(d) xstackp++ = (4)
#define popm() =--stackp /% function still needed x*/

(The function pop is still needed as an opcode in the machine, so we can’t just
replace all pop’s.) The new version runs about 35 percent faster; the times in
Table 8.1 shrink from 5.5 to 3.7 seconds, and from 5.0 to 3.1.

Exercise 8-22. The push and popm macros do no error checking. Comment on the
wisdom of this design. How can you combine the error-checking provided by the func-
tion versions with the speed of macros? O

8.8 A look back

There are some important lessons to learn from this chapter. First, the
language development tools are a boon. They make it possible to concentrate
on the interesting part of the job — language design — because it is so easy to
experiment. The use of a grammar also provides an organizing structure for
the implementation — routines are linked together by the grammar, and called
at the right times as parsing proceeds.

A second, more philosophical point, is the value of thinking of the job at
hand more as language development than as “writing a program.” Organizing
a program as a language processor encourages regularity of syntax (which is
the user interface), and structures the implementation. It also helps to ensure
that new features will mesh smoothly with existing ones. ‘‘Languages’ are cer-
tainly not limited to conventional programming languages — examples from
our own experience include eqn and pic, and yacc, lex and make them-
selves.

There are also some lessons about how tools are used. For instance, make
is invaluable. It essentially eliminates the class of error that arises from forget-
ting to recompile some routine. It helps to ensure that no excess work is done.
And it provides a convenient way to package a group of related and perhaps
dependent operations in a single file.

Header files are a good way to manage data declarations that must be visi-
ble in more than one file. By centralizing the information, they eliminate
errors caused by inconsistent versions, especially when coupled with make. It
is also important to organize the data and the routines into files in such a way
that they are not made visible when they don’t have to be.

There are a couple of topics that, for lack of space, we did not stress. One
is simply the degree to which we used all the other UNIX tools during
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development of the hoc family. Each version of the program is in a separate
directory, with identical files linked together; 1s and du are used repeatedly to
keep track of what is where. Many other questions are answered by programs.
For example, where is that variable declared? Use grep. What did we
change in this version? Use diff. How do we integrate the changes into that
version? Use idiff. How big is the file? Use we. Time to make a backup
copy? Use cp. How can we back up only the files changed since the last
backup? Use make. This general style is absolutely typical of day-to-day pro-
gram development on a UNIX system: a host of small tools, used separately or
combined as necessary, help to mechanize work that would otherwise have to
be done by hand.

History and bibliographic notes

yacc was developed by Steve Johnson. Technically, the class of languages
for which yacc can generate parsers is called LALR(1): left to right parsing,
looking ahead at most one token in the input. The notion of a separate
description to resolve precedence and ambiguity in the grammar is new with
yacc. See “Deterministic parsing of ambiguous grammars,” by A. V. Aho, S.
C. Johnson, and J. D. Ullman, CACM, August, 1975. There are also some
innovative algorithms and data structures for creating and storing the parsing
tables.

A good description of the basic theory underlying yacc and other parser
generators may be found in Principles of Compiler Design, by A. V. Aho and
J. D. Ullman (Addison-Wesley, 1977). yacc itself is described in Volume 2B
of The UNIX Programmer’s Manual. That section also presents a calculator com-
parable to hoc2; you might find it instructive to make the comparison.

lex was originally written by Mike Lesk. Again, the theory is described
by Aho and Ullman, and the lex language itself is documented in The UNIX
Programmer’s Manual .

yvacc, and to a lesser degree lex, have been used to implement many
language processors, including the portable C compiler, Pascal, FORTRAN 77,
Ratfor, awk, bc, eqn, and pic.

make was written by Stu Feldman. See “MAKE — a program for maintain-
ing computer programs,” Software—Practice & Experience, April, 1979.

Writing Efficient Programs by Jon Bentley (Prentice-Hall, 1982) describes
techniques for making programs faster. The emphasis is on first finding the
right algorithm, then refining the code if necessary.






CHAPTER 9: DOCUMENT PREPARATION

One of the first applications of the UNIX system was editing and formatting
documents; indeed, Bell Labs management was persuaded to buy the first
PDP-11 hardware by promises of a document preparation system, not an
operating system. (Fortunately, they got more than they bargained for.)

The first formatting program was called rof£. It was small, fast, and easy
to work with, so long as one was producing simple documents on a line
printer. The next formatter, nroff, by Joe Ossanna, was much more ambi-
tious. Rather than trying to provide every style of document that users might
ever want, Ossanna made nroff programmable, so that many formatting tasks
were handled by programming in the nroff language.

When a small typesetter was acquired in 1973, nrof £ was extended to han-
dle the multiple sizes and fonts and the richer character set that the typesetter
provided. The new program was called troff (which by analogy to ‘“‘en-roff”
is pronounced “‘tee-roff.”’) nroff and troff are basically the same program,
and accept the same input language; nroff ignores commands like size
changes that it can’t honor. We will talk mainly about troff but most of our
comments apply to nroff as well, subject to the limitations of output devices.

The great strength of troff is the flexibility of the basic language and its
programmability — it can be made to do almost any formatting task. But the
flexibility comes at a high price — troff is often astonishingly hard to use. It
is fair to say that almost all of the UNIX document preparation software is
designed to cover up some part of naked troff.

One example is page layout — the general style of a document, what the
titles, headings and paragraphs look like, where the page numbers appear, how
big the pages are, and so on. These are not built in; they have to be pro-
grammed. Rather than forcing each user to specify all of these details in every
document, however, a package of standard formatting commands is provided.
A user of the package does not say “‘the next line is to be centered, in bigger
letters, and in a bold font.” Instead, the user says “‘the next line is a title,”
and the packaged definition of the style of a title is used. Users talk about the
logical components of a document — titles, headings, paragraphs, footnotes,
etc. — instead of sizes, fonts, and positions.

289
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Unfortunately, what started out as a ‘‘standard” package of formatting
commands is no longer standard: there are several packages in wide use, plus
many local variants. We’ll talk about two general-purpose packages here: ms,
the original “standard,”” and mm, a newer version that is standard in System V.
We’ll also describe the man package for printing manual pages.

We will concentrate on ms because it is standard in the 7th Edition, it
exemplifies all such packages, and it is powerful enough to do the job: we used
it to typeset this book. But we did have to extend it a bit, for example, by
adding a command to handle words in this font in the text.

This experience is typical — the macro packages are adequate for many for-
matting tasks, but it is sometimes necessary to revert to the underlying troff
commands. We will describe only a small part of troff here.

Although troff provides the ability to control output format completely,
it’s far too hard to use for complicated material like mathematics, tables, and
figures. Each of these areas is just as difficult as page layout. The solution to
these problems takes a different form, however. Instead of packages of for-
matting commands, there are special-purpose languages for mathematics, tables
and figures that make it easy to describe what is wanted. Each is handled by a
separate program that translates its language into troff commands. The pro-
grams communicate through pipes.

These preprocessors are good examples of the UNIX approach at work —
rather than making troff even bigger and more complicated than it is,
separate programs cooperate with it. (Of course, the language development
tools described in Chapter 8 have been used to help with the implementations.)
We will describe two programs: tbl, which formats tables, and eqn, which
formats mathematical expressions.

We will also try to give hints about document preparation and the support-
ing tools. Our examples throughout the chapter will be a document describing
the hoc language of Chapter 8 and a hoc manual page. The document is
printed as Appendix 2.

9.1 The ms macro package

The crucial notion in the macro packages is that a document is described in
terms of its logical parts — title, section headings, paragraphs — not by details
of spacing, fonts and sizes of letters. This saves you from some very hard
work, and insulates your document from irrelevant details; in fact, by using a
different set of macro definitions with the same logical names, you can make
your document appear quite different. For example, a document might go
through the stages of technical report, conference paper, journal article and
book chapter with the same formatting commands, but formatted with four dif-
ferent macro packages.

Input to troff, whether or not a macro package is involved, is ordinary
text interspersed with formatting commands. There are two kinds of
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commands. The first consists of a period at the beginning of a line, followed
by one or two letters or digits, and perhaps by parameters, as illustrated here:

. PP
.ft B
This is a little bold font paragraph.

troff built-in commands all have lower-case names, so by convention com-
mands in macro packages are given upper-case names. In this example, .PP is
the ms command for a paragraph, and .ft B is a troff command that causes
a change to the bold font. (Fonts have upper case names; the fonts available
may be different on different typesetters.)

The second form of troff command is a sequence of characters that
begins with a backslash \, and may appear anywhere in the input; for example,
\fB also causes a switch to the bold font. This form of command is pure
troff; we’ll come back to it shortly.

You can format with nothing more than a . PP command before each para-
graph, and for most documents, you can get by with about a dozen different
ms commands. For example, Appendix 2, which describes hoc, has a title, the
authors’ names, an abstract, automatically-numbered section headings, and
paragraphs. It uses only 14 distinct commands, several of which come in pairs.
The paper takes this general form in ms:

. TL

Title of document (one or more lines)
AU

Author names, one per line

.AB

Abstract, terminated by .AE

.AE

.NH

Numbered heading (automatic numbering)
. PP

Paragraph ...

. PP

Another paragraph ...

.SH

Sub-heading (not numbered)

. PP

Formatting commands must occur at the beginning of a line. Input between
the commands is free form: the location of newlines in the input is unimpor-
tant, because troff moves words from line to line to make lines long enough
(a process called filling), and spreads extra space uniformly between words to
align the margins (justification). It’s a good practice, however, to start each
sentence on a new line; it makes subsequent editing easier.

Here is the beginning of the actual hoc document:
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.TL

Hoc - An Interactive Language For Floating Point Arithmetic
AU

Brian Kernighan

Rob Pike

.AB

.I Hoc

is a simple programmable interpreter

for floating point expressions.

It has C-style control flow,

function definition and the usual

numerical built-in functions

such as cosine and logarithm.

.AE

.NH

Expressions

.PP

.I Hoc

is an expression language,

much like C:

although there are several control-flow statements,
most statements such as assignments

are expressions whose value is disregarded.

The .I command italicizes its argument, or switches to italic if no argument is
given.
If you use a macro package, it’s specified as an argument to troff:

$ troff -ms hoc.ms

The characters after the -m determine the macro package.t When formatted
with ms, the hoc paper looks like this:

t The ms macros are in the file /usr/lib/tmac/tmac.s, and the man macros are in
/usr/lib/tmac/tmac.an.
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Hoc - An Interactive Language For Floating Point Arithmetic

Brian Kernighan
Rob Pike

ABSTRACT

Hoc is a simple programmable interpreter for floating point expres-
sions. It has C-style control flow, function definition and the usual
numerical built-in functions such as cosine and logarithm.

1. Expressions

Hoc is an expression language, much like C: although there are several control-
flow statements, most statements such as assignments are expressions whose value is
disregarded.

Displays

Although it is usually convenient that troff fills and justifies text, some-
times that isn’t desirable — programs, for example, shouldn’t have their mar-
gins adjusted. Such unformatted material is called display text. The ms com-
mands .DS (display start) and .DE (display end) demarcate text to be printed
as it appears, indented but without rearrangement. Here is the next portion of
the hoc manual, which includes a short display:

. PP

.I Hoc

is an expression language,

much like C:

although there are several control-flow statements,
most statements such as assignments

are expressions whose value is disregarded.
For example, the assignment operator

= assigns the value of its right operand
to its left operand, and yields the value,
so multiple assignments work.

The expression grammar is:
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.DS
I
expr: number
i variable
H ( expr )
H expr binop expr
H unop expr
H function ( arguments )
.R
.DE

Numbers are floating point.

which prints as

Hoc is an expression language, much like C: although there are several control-
flow statements, most statements such as assignments are expressions whose value is
disregarded. For example, the assignment operator = assigns the value of its right
operand to its left operand, and yields the value, so multiple assignments work. The
expression grammar is:

expr: number
| variable
| ( expr )
| expr binop expr
| unop expr
| function ( arguments )

Numbers are floating point.

Text inside a display is not normally filled or justified. Furthermore, if there
is not enough room on the current page, the displayed material (and everything
that follows it) is moved onto the next page. .DS permits several options,
including L for left-justified, C, which centers each line individually, and B,
which centers the entire display.

The items in the display above are separated by tabs. By default, troff
tabs are set every half inch, not every eight spaces as is usual. Even if tab
stops were every 8 spaces, though, characters are of varying widths, so tabs
processed by troff wouldn’t always appear as expected.

Font changes

The ms macros provide three commands to change the font. .R changes
the font to roman, the usual font, .I changes to italic, this font and .B
changes to boldface, this font. Unadorned, each command selects the font for
the subsequent text:
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This text is roman, but

I

this text is italic,

.R

this is roman again, and
.B

this is boldface.
appears like this:

This text is roman, but this text is italic, this is roman again, and this
is boldface.

.I and .B take an optional argument, in which case the font change applies
only to the argument. In troff, arguments containing blanks must be quoted,
although the only quoting character is the double quote ".

This is roman, but
.I this

is italic, and

.B "these words"
are bold.

is printed as
This is roman, but this is italic, and these words are bold.

Finally, a second argument to .I or .B is printed in roman, appended
without spaces to the first argument. This feature is most commonly used to
produce punctuation in the right font. Compare the last parenthesis of

(parenthetical
.I "italic words)"

which prints incorrectly as
(parenthetical italic words)

with

(parenthetical
.I "italic words" )

which prints correctly as
(parenthetical italic words)

Font distinctions are recognized by nrof £, but the results aren’t as pretty.
Italic characters are underlined, and there are no bold characters, although
some versions of nrof £ simulate bold by overstriking.
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Miscellaneous commands

Footnotes are introduced with .FS and terminated with .FE. You are
responsible for any identifying mark like an asterisk or a dagger.T This foot-
note was created with

identifying mark like an asterisk or a dagger.\(dg
.FS

\(dg Like this one.

.FE

This footnote was created with ...

Indented paragraphs, perhaps with a number or other mark in the margin,
are created with the .IP command. To make this:
(1) First little paragraph.

(2) Second paragraph, which we make longer to show that it will be indented
on the second line as well as the first.

requires the input

LIP (1)
First little paragraph.
JIP (2)

Second paragraph,

A .PP or .LP (left-justified paragraph) terminates an .IP. The .IP argu-
ment can be any string; use quotes to protect blanks if necessary. A second
argument can be used to specify the amount of indent.

The command pair .KS and .KE causes text to be kept together; text
enclosed between these commands will be forced onto a new page if it won’t all
fit on the current page. If .KF is used instead of .KS, the text will float past
subsequent text to the top of the next page if necessary to keep it on one page.
We used .KF for all the tables in this book.

You can change most of ms’s default values by setting number registers,
which are troff variables used by ms. Perhaps the most common are the
registers that control the size of text and the spacing between lines. Normal
text size (what you are reading now) is ‘10 point,” where a point is about 1/72
of an inch, a unit inherited from the printing industry. Lines are normally
printed at 12-point separation. To change these, for example to 9 and 11 (as in
our displays), set the number registers PS and VS with

.nr PS 9
.nr VS 11

Other number registers include LL for line length, PI for paragraph indent,
and PD for the separation between paragraphs. These take effect at the next
.PPor .LP.

t Like this one.
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Table 9.1: Common ms Formatting Commands; see also ms(7)

.AB start abstract; terminated by .AE
.AU author’s name follows on next line; multiple .AU’s permitted
.B begin bold text, or embolden argument if supplied

.DS ¢t  start display (unfilled) text; terminated by .DE
t = L (left-adjusted), C (centered), B (block-centered)
.EQ s begin equation s (eqn input); terminated by .EN

.Fs start footnote; terminated by . FE

I begin italic text, or italicize argument if supplied

.IP s indented paragraph, with s in margin

.KF keep text together, float to next page if necessary; end with .KE
.KS keep text together on page; end with .KE

.LP new left-justified paragraph

.NH n  n-th level numbered heading; heading follows, up to .PP or .LP
.PP new paragraph

.R return to roman font

.SH sub-heading; heading follows, up to .PP

.TL title follows, up to next ms command

.TS begin table (tbl input); terminated by .TE

The mm macro package

We won’t go into any detail on the mm macro package here, since it is in
spirit and often in detail very similar to ms. It provides more control of
parameters than ms does, more capabilities (e.g., automatically numbered
lists), and better error messages. Table 9.2 shows the mm commands
equivalent to the ms commands in Table 9.1.

Exercise 9-1. Omitting a terminating command like .AE or .DE is usually a disaster.
Write a program mscheck to detect errors in ms input (or your favorite package).
Suggestion: awk. O

9.2 The troff level

In real life, one sometimes has to go beyond the facilities of ms, mm or
other packages to get at some capability of bare troff. Doing so is like pro-
gramming in assembly language, however, so it should be done cautiously and
reluctantly.

Three situations arise: access to special characters, in-line size and font
changes, and a few basic formatting functions.

Character names
Access to strange characters — Greek letters like r, graphics like ® and T,
and a variety of lines and spaces — is easy, though not very systematic. Each
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Table 9.2: Common mm Formatting Commands
.AS start abstract; terminated by .AE
.AU author’s name follows as first argument
.B begin bold text, or embolden argument if supplied
.DF keep text together, float to next page if necessary; end at .DE
.DS start display text; terminated by .DE
.EQ begin equation (eqn input); terminated by .EN
.FS start footnote; terminated by .FE
.I begin italic text, or italicize argument if supplied
.H n "..." n-th level numbered heading "..."
JHU "L unnumbered heading "..."
.P paragraph. Use .nr Pt 1 once for indented paragraphs
.R return to roman font
.TL title follows, up to next mm command
.TS begin table (tbl input); terminated by .TE

such character has a name that is either \c where ¢ is a single character, or
\ (cd where cd is a pair of characters.

troff prints an ASCII minus sign as a hyphen - rather than a minus —. A
true minus must be typed \- and a dash must be typed \ (em, which stands for
“em dash,” the character “—".

Table 9.3 lists some of the most common special characters; there are many
more in the troff manual (and the list may be different on your system).

There are times when troff must be told nor to interpret a character,
especially a backslash or a leading period. The two most common ‘hands-off”
characters are \e and \&. The sequence \e is guaranteed to print as a
backslash, uninterpreted, and is used to get a backslash in the output. \&, on
the other hand, is.nothing at all: it is a zero-width blank. Its main use is to
prevent troff from interpreting periods at the beginning of lines. We used
\e and \& a lot in this chapter. For example, the ms outline at the beginning
of this chapter was typed as

\&.TL

.I "Title of document"
\&.AU

.I "Author name"

\&.AB

\&. ..

Of course, the section above was typed as
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Table 9.3: Some troff special character sequences
- - hyphen
\ (hy - hyphen, same as above
\- - minus sign in current font
\ (mi - minus sign in the mathematics font
\ (em — em dash
\& nothing at all; protects leading period
\blank unpaddable blank
\ i unpaddable half blank
\e literal escape character, usually \
\ (bu bullet ®
\(dg dagger T
\(*a o. \(*b=B, \(*c=§&, \(*p=m, etc.
\fX change to font X; X=P is previous
\f (XX change to font XX
\sn change to point size n; n=0 is previous
\s*n relative point size change
\e&.TL
\&.I "Title of document"”
\e&.AU

and you can imagine how that in turn was typed.

Another special character that turns up occasionally is the unpaddable
blank, a \ followed by a blank. Normally, troff will stretch an ordinary
blank to align the margins, but an unpaddable blank is never adjusted: it is like
any other character and has a fixed width. It can also be used to pass multiple
words as a single argument:

.I Title\ of\ document

Font and size changes

Most font and format changes can be done with the beginning-of-line mac-
ros like .I, but sometimes changes must be made in-line. In particular, the
newline character is a word separator, so if a font change must be made in the
middle of the word, the macros are unusable. This subsection discusses how
troff overcomes this problem — note that it is trof £ that provides the facil-
ity, not the ms macro package.

troff uses the backslash character to introduce in-line commands. The
two most common commands are \f to change font and \s to change point
size.

The font is specified with \f by a character immediately after the £:
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a \fBfriv\fIolous\fR \fIvar\fBiety\fR of \fIfonts\fP

is output as
a frivolous variety of fonts

The font change \fP reverts to the previous font — whatever the font was
before the last switch. (There’s only one previous font, not a stack.)

Some fonts have two-character names. These are specified by the format
\f (XX where XX is the font name. For example, the font on our typesetter in
which programs in this book are printed is called CW (Courier Constant
Width), so keyword is written as

\f (CWkeyword\fP

It’s clearly painful to have to type this, so one of our extensions to ms is a .CW
macro so we don’t have to type or read backslashes. We use it to typeset in-
line words such as trof£, like this:

The
.CW troff
formatter ...

Formatting decisions defined by macros are also easy to change later.

A size change is introduced by the sequence \sn, where n is one or two
digits that specify the new size: \s8 switches to 8 point type. More com-
monly, relative changes may be made by prefixing a plus or minus to the size.
For example, words can be printed in SMALL CAPS by typing

\s-2SMALL CAPS\s0

\s0 causes the size to revert to its previous value. It’s the analog of \fP, but
in the troff tradition, it isn’t spelled \sP. Our extensions to ms include a
macro .UC (upper case) for this job.

Basic troff commands

Realistically, even with a good macro package, you have to know a handful
of troff commands for controlling spacing and filling, setting tab stops, and
the like. The command .br causes a break, that is, the next input that follows
the .br will appear on a new output line. This could be used, for example, to
split a long title at the proper place:

.TL
Hoc - An Interactive Language
.br
For Floating Point Arithmetic

The command .nf turns off the normal filling of output lines; each line of
input goes directly into one line of output. The command .fi turns filling
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back on. The command .ce centers the next line.

The command .bp begins a new page. The command .sp causes a single
blank line to appear in the output. A .sp command can be followed by an
argument to specify how many blank lines or how much space.

.sp 3 Leave 3 blank lines
.sp .5 Leave blank half-line
.sp 1.51 Leave 1.5 inches

.sp 3p Leave 3 points

.sp 3.1c Leave 3.1 centimeters

Extra space at the bottom of a page is discarded, so a large .sp is equivalent
to a .bp.
The .ta command sets tab stops (which are initialized to every half inch).

.ta nnn...

sets tab stops at the specified distances from the left margin; as with .sp, each
number #n is in inches if followed by ‘i’. A tab stop suffixed with R will right-
justify the text at the next tab stop; C causes a centered tab.

The command .ps n sets the point size to n; the command .ft X sets the
font to X. The rules about incremental sizes and returning to the previous
value are the same as for \s and \f.

Defining macros

Defining macros in full generality would take us much further into the intri-
cacies of troff than is appropriate, but we can illustrate some of the basics.
For example, here is the definition of .CW:

.de CW Start a definition
N&NE (CWA\$ 1\EP\\$2 Font change around first argument
End of definition

\$n produces the value of the n-th argument when the macro is invoked; it is
empty if no n-th argument was provided. The double \ delays evaluation of
\$n during macro definition. The \& prevents the argument from being inter-
preted as a troff command, in case it begins with a period, as in

.CW .sp

9.3 The tbl and eqn preprocessors

troff is a big and complicated program, both inside and out, so modifying
it to take on a new task is not something to be undertaken lightly. Accord-
ingly the development of programs for typesetting mathematics and tables took
a different approach — the design of separate languages implemented by
separate programs eqn and tbl that act as “‘preprocessors’ for troff. In
effect, troff is an assembly language for a typesetting machine, and eqn and
tbl compile into it.



302 THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 9

eqn came first. It was the first use of yacc for a non-programming
language.t th1l came next, in the same spirit as eqn, though with an unrelated
syntax. tbl doesn’t use yacc, since its grammar is simple enough that it’s not
worthwhile.

The UNIX pipe facility strongly suggests the division into separate programs.
Besides factoring the job into pieces (which was necessary anyway — troff
by itself was already nearly as large as a program could be on a PDP-11), pipes
also reduce the communication between the pieces and between the program-
mers involved. This latter point is significant — one doesn’t need access to
source code to make a preprocessor. Furthermore, with pipes there are no
giant intermediate files to worry about, unless the components are intentionally
run separately for debugging.

There are problems when separate programs communicate by pipes. Speed
suffers somewhat, since there is a lot of input and output: both eqn and tbl
typically cause an eight-to-one expansion from input to output. More impor-
tant, information flows only one direction. There is no way, for example, that
eqn can determine the current point size, which leads to some awkwardness in
the language. Finally, error reporting is hard; it is sometimes difficult to relate
a diagnostic from troff back to the eqn or tbl problem that caused it.

Nevertheless, the benefits of separation far outweigh the drawbacks, so
several other preprocessors have been written, based on the same model.

Tables

Let us begin a brief discussion of tbl, since the first thing we want to show
is a table of operators from the hoc document. tbl reads its input files or the
standard input and converts text between the commands .TS (table start) and
. TE (table end) into the troff commands to print the table, aligning columns
and taking care of all the typographical details. The .TS and .TE lines are
also copied through, so a macro package can provide suitable definitions for
them, for example to keep the table on one page and set off from surrounding
text.

Although you will need to look at the tbl manual to produce complicated
tables, one example is enough to show most of the common features. Here is
one from the hoc document:

TItis imi)robable that eqn would exist if yacc had not been available at the right time.
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.TS
center, box;
c s
1fcw 1.
\fBTable 1:\fP Operators, in decreasing order of precedence
.sp .5
~ exponentiation (\s-1FORTRAN\sO0 ##), right associative
I \- (unary) logical and arithmetic negation
* / multiplication, division
+ \- addition, subtraction
> >= relational operators: greater, greater or equal,
< <= less, less or equal,
\&== |= equal, not equal (all same precedence)
&& logical AND (both operands always evaluated)
T logical OR (both operands always evaluated)
\&= assignment, right associative
TE

which produces the following table:

Table 1: Operators, in decreasing order of precedence

exponentiation (FORTRAN **), right associative
- (unary) logical and arithmetic negation

{

* / multiplication, division

+ - addition, subtraction

> >= relational operators: greater, greater or equal,
< <= less, less or equal,

== I= equal, not equal (all same precedence)

&& logical AND (both operands always evaluated)

i logical OR (both operands always evaluated)
= assignment, right associative

The words before the semicolon (center, box) describe global properties
of the table: center it horizontally on the page and draw a box around it.
Other possibilities include doublebox, allbox (each item in a box), and
expand (expand table to page width).

The next lines, up to the period, describe the format of various sections of
the table, which in this case are the title line and the body of the table. The
first specification is for the first line of the table, the second specification
applies to the second line, and the last applies to all remaining lines. In Table
1, there are only two specification lines, so the second specification applies to
every table line after the first. The format characters are c for items centered
in the column, r and 1 for right or left justification, and n for numeric align-
ment on the decimal point. s specifies a ‘““‘spanned” column; in our case ‘c s’
means center the title over the entire table by spanning the second column as



304 THE UNIX PROGRAMMING ENVIRONMENT CHAPTER 9

well as the first. A font can be defined for a column; the tbl specification
1fcw prints a left-justified column in the Cw font.

The text of the table follows the formatting information. Tab characters
separate columns, and some troff commands such as .sp are understood
inside tables. (Note a couple of appearances of \&: unprotected leading - and
= signs in columns tell tbl to draw lines across the table at that point.)

tbl produces a wider variety of tables than this simple example would sug-
gest: it will fill text in boxes, vertically justify column headings, and so on.
The easiest way to use it for complicated tables is to look for a similar example
in the manual in Volume 2A of the UNIX Programmer’s Manual and adapt the
commands.

Mathematical expressions

The second troff preprocessor is eqn, which converts a language describ-
ing mathematical expressions into the troff commands to print them. It
automatically handles font and size changes, and also provides names for stan-
dard mathematical characters. eqn input usually appears between .EQ and
.EN lines, analogous to tbl’s .TS and .TE. For example,

.EQ
x sub i
.EN

produces x;. If the ms macro package is used, the equation is printed as a

‘“display,” and an optional argument to .EQ specifies an equation number.
For example, the Cauchy integral formula
1 f(z)
= — dz 9.1
f© M{Z_g 9.1
is written as
.EQ (9.1)
f( zeta ) ~=~ 1 over {2 pi i} int from C
f(z) over {z - zeta} dz
.EN

The eqgn language is based on the way that mathematics is spoken aloud.
One difference between spoken mathematics and eqn input is that braces {}
are the parentheses of eqn — they override the default precedence rules of the
language — but ordinary parentheses have no special significance. Blanks,
however, are significant. Note that the first zeta is surrounded by blanks in
the example above: keywords such as zeta and over are only recognized
when surrounded by blanks or braces, neither of which appear in the output.
To force blank space into the output, use a tilde character ~, as in ~=~. To
get braces, use "{" and "}".

There are several classes of eqn keywords. Greek letters are spelled out,
in lower or upper case, as in lambda and LAMBDA (A and A). Other
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mathematical characters have names, such as sum, int, infinity, grad: >,

J, ©, V. There are positional operators such as sub, sup, from, to, and
over:

is
sum from i=0 to infinity x sub i sup 2 ~->~ 1 over {2 pi}

There are operators like sqrt and expandable parentheses, braces, etc. eqn
will also create columns and matrices of objects. There are also commands to
control sizes, fonts and positions when the defaults are not correct.

It is common to place small mathematical expressions such as log;o(x) in
the body of the text, rather than in displays. The eqn keyword delim speci-
fies a pair of characters to bracket in-line expressions. The characters used as
left and right delimiters are usually the same; often a dollar sign $ is used.
But since hoc uses $ for arguments, we use @ in our examples. % is also a
suitable delimiter, but avoid the others: so many characters have special pro-
perties in the various programs that you can get spectacularly anomalous
behavior. (We certainly did as we wrote this chapter.)

So, after saying

.EQ
delim @@
.EN
[}

in-line expressions such as > x; can be printed:
i=0
in-line expressions

such as @sum from i=0 to infinity x sub i@ can be printed:

In-line expressions are used for mathematics within a table, as this example
from the hoc document shows:

.TS

center, box;

c s s

1fCW n 1.

\fBTable 3:\fP Built-in Constants

.sp .5

DEG 57.29577951308232087680 @180/ pi@, degrees per radian

E 2.71828182845904523536 @e@, base of natural logarithms
GAMMA 0.57721566490153286060 @gamma@, Euler-Mascheroni constant
PHI 1.61803398874989484820 @( sqrt 5 +1)/2@, the golden ratio
PI 3.14159265358979323846 @pi@, circular transcendental number
.TE

This table also shows how tbl lines up the decimal points in numeric (n)
columns. The output appears below.
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Table 3: Built-in Constants
DEG 57.29577951308232087680 180/, degrees per radian

E 2.71828182845904523536 e, base of natural logarithms
GAMMA 0.57721566490153286060 vy, Euler-Mascheroni constant
PHI 1.61803398874989484820  (V/5+1)/2, the golden ratio

PI 3.14159265358979323846  m, circular transcendental number

Finally, since eqn italicizes any string of letters that it doesn’t recognize, it
is a common idiom to italicize ordinary words using eqn. @Word@, for exam-
ple, prints as Word. But beware: eqn recognizes some common words (such
as from and to) and treats them specially, and it discards blanks, so this trick
has to be used carefully.

Getting output

Once you have your document ready, you have to line up all the preproces-
sors and troff to get output. The order of commands is tbl, then eqn, then
troff. If you are just using troff, type

$ troff -ms filenames (Or -mm)

Otherwise, you must specify the argument filenames to the first command in
the pipeline and let the others read their standard input, as in

$ eqn filenames | troff -ms

or

$ tbl filenames | eqn | troff -ms

It’s a nuisance keeping track of which of the preprocessors are,really
needed to print any particular document. We found it useful to write a pro-
gram called doctype that deduces the proper sequence of commands:

$ doctype ch9.=*

cat ch9.1 ch9.2 ch9.3 ch9.4 | pic | tbl | eqn | troff -ms
$ doctype hoc.ms

cat hoc.ms | tbl | egqn | troff -ms

$

doctype is implemented with tools discussed at length in Chapter 4; in
particular, an awk program looks for the command sequences used by the
preprocessors and prints the command line to invoke those needed to format
the document. It also looks for the .PP (paragraph) command used by the ms
package of formatting requests.
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$ cat doctype

# doctype: synthesize proper command line for troff
echo -n "cat $* | "

egrep -h ‘“\.(EQITSI\[IPSIISIPP)’ $x |

sort -u i

awk

/°\.PP/ { ms++ }
/"\.EQ/ { eqn++ }
/°\.TS/ { tbl++ }
/°\.PS/ { pic++ }
/°\.IS/ { ideal++ }
/"\.\[/ { refer++ }
END {

if (refer > 0) printf "refer | "
if (pic > 0) printf "pic | "
if (ideal > 0) printf "ideal | "
if (tbl > 0) printf "tbl
if (eqn > 0) printf "eqgn
printf "troff "

if (ms > 0) printf "-ms"
printf "\n"

} -
$

(The -h option to egrep causes it to suppress the filename headers on each
line; unfortunately this option is not in all versions of the system.) The input
is scanned, collecting information about what kinds of components are used.
After all the input has been examined, it’s processed in the right order to print
the output. The details are specific to formatting troff documents with the
standard preprocessors, but the idea is general: let the machine take care of the
details.

doctype is an example, like bundle, of a program that creates a pro-
gram. As it is written, however, it requires the user to retype the line to the
shell; one of the exercises is to fix that.

When it comes to running the actual troff command, you should bear in
mind that the behavior of troff is system-dependent: at some installations it
drives the typesetter directly, while on other systems it produces information
on its standard output that must be sent to the typesetter by a separate pro-
gram.

By the way, the first version of this program didn’t use egrep or sort;
awk itself scanned all the input. It turned out to be too slow for large docu-
ments, so we added egrep to do a fast search, and then sort -u to toss out
duplicates. For typical documents, the overhead of creating two extra
processes to winnow the data is less than that of running awk on a lot of input.
To illustrate, here is a comparison between doctype and a version that just
runs awk, applied to the contents of this chapter (about 52000 characters):
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,

$ time awk . doctype without egrep ...” ch9.#
cat ch9.1 ch9.2 ch9.3 ch9.4 | pic | tbl | eqn | troff -ms

real 31.0
user 8.9
sys 2.8

$ time doctype ch9.=*
cat ch9.1 ch9.2 ch9.3 ch9.4 | pic | tbl | egqn | troff -ms

real 7.0
user 1.0
sys 2.3
$

The comparison is evidently in favor of the version using three processes.
(This was done on a machine with only one user; the ratio of real times would
favor the egrep version even more on a heavily loaded system.) Notice that
we did get a simple working version first, before we started to optimize.

Exercise 9-2. How did we format this chapter? O

Exercise 9-3. If your eqn delimiter is a dollar sign, how do you get a dollar sign in the
output? Hint: investigate quotes and the pre-defined words of eqn. O

Exercise 9-4. Why doesn’t

$ ‘doctype filenames"*

work? Modify doctype to run the resulting command, instead of printing it. O

Exercise 9-5. Is the overhead of the extra cat in doctype important? Rewrite
doctype to avoid the extra process. Which version is simpler? O

Exercise 9-6. Is it better to use doctype or to write a shell file containing the com-
mands to format a specific document? O

Exercise 9-7. Experiment with various combinations of grep, egrep, fgrep, sed,
awk and sort to create the fastest possible version of doctype. O

9.4 The manual page

The main documentation for a command is usually the manual page — a
one-page description in the UNIX Programmer’s Manual. (See Figure 9.2.) The
manual page is stored in a standard directory, usually /usr/man, in a sub-
directory numbered according to the section of the manual. Our hoc manual
page, for example, because it describes a user command, is kept in
/usr/man/mani1/hoc. 1.

Manual pages are printed with the man(1) command, a shell file that runs
nroff -man, so man hoc prints the hoc manual. If the same name appears
in more than one section, as does man itself (Section 1 describes the command,
while Section 7 describes the macros), the section can be specified to man:



CHAPTER 9 DOCUMENT PREPARATION 309

$ man 7 man

prints only the description of the macros. The default action is to print all
pages with the specified name, using nroff, but man -t generates typeset
pages using troff.

The author of a manual page creates a file in the proper subdirectory of
/usr/man. The man command calls nroff or troff with a macro package
to print the page, as we can see by searching the man command for formatter
invocations. Our result would be

$ grep roff ‘which man'

nroff $opt -man $all ;;

negn $all | nroff $opt -man ;;

troff $opt -man $all ;;

troff -t $opt -man $all | tc ;;

eqn $all | troff $opt -man ;;

eqn $all | troff -t $opt -man | tc ;;
$

The variety is to deal with options: nroff vs. troff, whether or not to run
eqn, etc. The manual macros, invoked by troff -man, define troff com-
mands that format in the style of the manual. They are basically the same as
the ms macros, but there are differences, particularly in setting up the title and
in the font change commands. The macros are documented — briefly — in
man(7), but the basics are easy to remember. The layout of a manual page is:

.TH COMMAND section-number

.SH NAME

command \- brief description of function

.SH SYNOPSIS

.B command

options

.SH DESCRIPTION

Detailed explanation of programs and options.

Paragraphs are introduced by .PP.

. PP

This is a new paragraph.

.SH FILES

Files used by the command, e.g., passwd(l) mentions /etc/passwd
.SH "SEE ALSO"

References to related documents, including other manual pages
.SH DIAGNOSTICS

Description of any unusual output (e.g., see cmp(l))

.SH BUGS

Surprising features (not always bugs; see below)

If any section is empty, its header is omitted. The .TH line and the NAME,
SYNOPSIS and DESCRIPTION sections are mandatory.
The line
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.TH COMMAND section-number

names the command and specifies the section number. The various .SH lines
identify sections of the manual page. The NAME and SYNOPSIS sections are
special; the others contain ordinary prose. The NAME section names the com-
mand (this time in lower case) and provides a one-line description of it. The
SYNOPSIS section names the options, but doesn’t describe them. As in any sec-
tion, the input is free form, so font changes can be specified with the .B, .I
and .R macros. In the SYNOPSIS section, the name and options are bold, and
the rest of the information is roman. The ed(1) NAME and SYNOPSIS sec-
tions, for example, are:

.SH NAME

ed \- text editor
.SH SYNOPSIS

.B ed

[
.B \-

11
.B \-x
] [ name ]

These come out as:

NAME

ed — text editor
SYNOPSIS

ed[ — ][ —x ][ name ]

Note the use of \- rather than a plain -.

The DESCRIPTION section describes the command and its options. In most
cases, it is a description of the command, not the language the command
defines. The cc(1) manual page doesn’t define the C language; it says how to
run the cc command to compile C programs, how to invoke the optimizer,
where the output is left, and so on. The language is specified in the C refer-
ence manual, cited in the SEE ALSO section of cc(1). On the other hand, the
categories are not absolute: man(7) is a description of the language of manual
macros.

By convention, in the DESCRIPTION section, command names and the tags
for options (such as ‘“‘name” in the ed page) are printed in italics. The macros
.I (print first argument in italics) and .IR (print first argument in italic,
second in roman) make this easy. The .IR macro is there because the .I
macro in the man package doesn’t share with that in ms the undocumented but
convenient treatment of the second argument.

The FILES section mentions any files implicitly used by the command.
DIAGNOSTICS need only be included if there is unusual output produced by
the command. This may be diagnostic messages, exit statuses or surprising
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.TH HOC 1

.SH NAME

hoc \- interactive floating point language
.SH SYNOPSIS

.B hoc

[ file ... ]
.SH DESCRIPTION
.I Hoc

interprets a simple language for floating point arithmetic,
at about the level of BASIC, with C-like syntax and
functions and procedures with arguments and recursion.

.PP

The named

.IR file s

are read and interpreted in order.

If no

.I file

is given or if

.I file

is *\-’

.I hoc

interprets the standard input.

.PP

.I Hoc

input consists of

.I expressions

and

.IR statements

Expressions are evaluated and their results printed.
Statements, typically assignments and function or procedure
definitions, produce no output unless they explicitly call

.IR print
.SH "SEE ALSO"
I

Hoc \- An Interactive Language for Floating Point Arithmetic
by Brian Kernighan and Rob Pike.

.br

.IR bas (1),

.IR bc (1)

and

.IR dc (1).

.SH BUGS

311

Error recovery is imperfect within function and procedure definitions.

.br
The treatment of newlines is not exactly user-friendly.

Figure 9.1: /usr/man/man1/hoc. 1

variations of the command’s normal behavior. The BUGS section is also some-
what misnamed. Defects reported here aren’t so much bugs as shortcomings
— simple bugs should be fixed before the command is installed. To get a feel-
ing for what goes in the DIAGNOSTICS and BUGS sections, you might browse

‘hrough the standard manual.
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An example should clarify how to write the manual page. The source for
hoc(1), /usr/man/mani/hoc. 1, is shown in Figure 9.1, and Figure 9.2 is
the output of

$ man -t hoc
Exercise 9-8. Write a manual page for doctype. Write a version of the man com-

mand that looks in your own man directory for documentation on your personal pro-
grams. O

HOC(1) HOC(1) |

NAME
hoc — interactive floating point language

SYNOPSIS
hoc [ file ... ]

DESCRIPTION
Hoc interprets a simple language for floating point arithmetic, at about the level
of BASIC, with C-like syntax and functions and procedures with arguments and
recursion.

The named files are read and interpreted in order. If no file is given or if file is
‘=’ hoc interprets the standard input.
Hoc input consists of expressions and statements. Expressions are evaluated and
their results printed. Statements, typically assignments and function or procedure
definitions, produce no output unless they explicitly call prinz.

SEE ALSO
Hoc — An Interactive Language for Floating Point Arithmetic by Brian Kernighan
and Rob Pike.
bas(1), bc(1) and dc(1).

BUGS
Error recovery is imperfect within function and procedure definitions.
The treatment of newlines is not exactly user-friendly.

8th Edition 1

Figure 9.2: hoc(1)
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9.5 Other document preparation tools

There are several other programs to help with document preparation. The
refer(1l) command looks up references by keywords and installs in your docu-
ment the in-line citations and a reference section at the end. By defining suit-
able macros, you can arrange that refer print references in the particular
style you want. There are existing definitions for a variety of computer science
journals. refer is part of the 7th Edition, but has not been picked up in some
other versions.

pic(l) and ideal(l) do for pictures what eqn does for equations. Pic-
tures are significantly more intricate than equations (at least to typeset), and
there is no oral tradition of how to talk about pictures, so both languages take
some work to learn and to use. To give the flavor of pic, here is a simple
picture and its expression in pic.

.PS
.ps -1
box invis "document"; arrow
box dashed "pic"; arrow
box dashed "tbl"; arrow
box dashed "egn"; arrow
box "troff"; arrow
box invis "typesetter"
[ box invis "macro" "package"
spline right then up -> ] with .ne at 2nd last box.s

.ps +1
.PE
poeese- T - b 1
1
document——=4 pic +—= tbl ——=] eqn ——= troff ——stypesetter
O J Lo J bemeeoe J
macro J
package

The pictures in this book were all done with pic. pic and ideal are not
part of the 7th Edition but are now available.

refer, pic and ideal are all troff preprocessors. There are also pro-
grams to examine and comment on the prose in your documents. The best
known of these is spel1(1), which reports on possible spelling errors in files;
we used it extensively. style(l) and diction(l) analyze punctuation, gram-
mar and language usage. These in turn developed into the Writer’s Work-
bench, a set of programs to help improve writing style. The Writer’s Work-
bench programs are good at identifying cliches, unnecessary words and sexist
phrases.

spell is standard. The others may be on your system; you can easily find
out by using man:
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$ man style diction wwb

or by listing /bin and /usr/bin.

History and bibliographic notes

troff, written by the late Joe Ossanna for the Graphics Systems CAT-4
typesetter, has a long lineage, going back to RUNOFF, which was written by J.
E. Saltzer for CTSS at MIT in the early 1960’s. These programs share the
basic command syntax and ideas, although troff is certainly the most compli-
cated and powerful, and the presence of eqn and the other preprocessors adds
significantly to its utility. There are several newer typesetting programs with
more civilized input format; TEX, by Don Knuth (TEX and Metafont: New
Directions in Typesetting, Digital Press, 1979), and Scribe, by Brian Reid
(““Scribe: a high-level approach to computer document formatting,” 7th Sympo-
sium on the Principles of Programming Languages, 1980), are probably the
best known. The paper ‘“‘Document Formatting Systems: Survey, Concepts and
Issues” by Richard Furuta, Jeffrey Scofield, and Alan Shaw (Computing Sur-
veys, September, 1982) is a good survey of the field.

The original paper on eqn is “A system for typesetting mathematics,”
(CACM, March 1975), by Brian Kernighan and Lorinda Cherry. The ms
macro package, tbl and refer are all by Mike Lesk; they are documented
only in the UNIX Programmer’s Manual, Volume 2A.

pic is described in “PIC — a language for typesetting graphics,” by Brian
Kernighan, Software—Practice and Experience, January, 1982. ideal is
described in ““A high-level language for describing pictures,” by Chris Van
Wyk, ACM Transactions on Graphics, April, 1982.

spell is a command that turned from a shell file, written by Steve John-
son, into a C program, by Doug Mcllroy. The 7th Edition spell uses a hash-
ing mechanism for quick lookup, and rules for automatically stripping suffixes
and prefixes to keep the dictionary small. See “Development of a spelling
list,” M. D. Mcllroy, IEEE Transactions on Communications, January, 1982.

The style and diction programs are described in ‘“Computer aids for
writers,” by Lorinda Cherry, SIGPLAN Symposium on Text Manipulation,
Portland, Oregon (June 1981).
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The UNIX operating system is well over ten years old, but the number of
computers running it is growing faster than ever. For a system designed with
no marketing goals or even intentions, it has been singularly successful.

The main reason for its commercial success is probably its portability — the
feature that everything but small parts of the compilers and kernel runs
unchanged on any computer. Manufacturers that run UNIX software on their
machines therefore have comparatively little work to do to get the system run-
ning on new hardware, and can benefit from the expanding commercial market
for UNIX programs.

But the UNIX system was popular long before it was of commercial signifi-
cance, and even before it ran on anything but the PDP-11. The 1974 CACM
paper by Ritchie and Thompson generated interest in the academic community,
and by 1975, 6th Edition systems were becoming common in universities.
Through the mid-1970’s UNIX knowledge spread by word of mouth: although
the system came unsupported and without guarantee, the people who used it
were enthusiastic enough to convince others to try it too. Once people tried it,
they tended to stick with it; another reason for its current success is that the
generation of programmers who used academic UNIX systems now expect to
find the UNIX environment where they work.

Why did it become popular in the first place? The central factor is that it
was designed and built by a small number (two) of exceptionally talented peo-
ple, whose sole purpose was to create an environment that would be convenient
for program development, and who had the freedom to pursue that ideal. Free
of market pressure, the early systems were small enough to be understood by a
single person. John Lions taught the 6th Edition kernel in an undergraduate
operating systems course at the University of New South Wales in Australia.
In notes prepared for the class, he wrote, *... the whole documentation is not
unreasonably transportable in a student’s briefcase.”” (This has been fixed in
recent versions.)

In that early system were packed a number of inventive applications of
computer science, including stream processing (pipes), regular expressions,
language theory (yacc, lex, etc.) and more specific instances like the

315
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algorithm in diff. Binding it all together was a kernel with “‘features seldom
found even in larger operating systems.”” As an example, consider the I/O
structure: a hierarchical file system, rare at the time; devices installed as names
in the file system, so they require no special utilities; and perhaps a dozen criti-
cal system calls, such as an open primitive with exactly two arguments. The
software was all written in a high-level language and distributed with the sys-
tem so it could be studied and modified.

The UNIX system has since become one of the computer market’s standard
operating systems, and with market dominance has come responsibility and the
need for “features” provided by competing systems. As a result, the kernel
has grown in size by a factor of 10 in the past decade, although it has certainly
not improved by the same amount. This growth has been accompanied by a
surfeit of ill-conceived programs that don’t build on the existing environment.
Creeping featurism encrusts commands with options that obscure the original
intention of the programs. Because source code is often not distributed with
the system, models of good style are harder come by.

Fortunately, however, even the large versions are still suffused with the
ideas that made the early versions so popular. The principles on which UNIX is
based — simplicity of structure, the lack of disproportionate means, building
on existing programs rather than recreating, programmability of the command
interpreter, a tree-structured file system, and so on — are therefore spreading
and displacing the ideas in the monolithic systems that preceded it. The UNIX
system can’t last forever, but systems that hope to supersede it will have to
incorporate many of its fundamental ideas.

We said in the preface that there is a UNIX approach or philosophy, a style
of how to approach a programming task. Looking back over the book, you
should be able to see the elements of that style illustrated in our examples.

First, let the machine do the work. Use programs like grep and wc and
awk to mechanize tasks that you might do by hand on other systems.

Second, let other people do the work. Use programs that already exist as
building blocks in your programs, with the shell and the programmable filters
to glue them together. Write a small program to interface to an existing one
that does the real work, as we did with idiff. The UNIX environment is rich
in tools that can be combined in myriad ways; your job is often just to think of
the right combination.

Third, do the job in stages. Build the simplest thing that will be useful, and
let your experience with that determine what (if anything) is worth doing next.
Don’t add features and options until usage patterns tell you which ones are
needed.

Fourth, build tools. Write programs that mesh with the existing environ-
ment, enhancing it rather than merely adding to it. Built well, such programs
themselves become a part of everyone’s toolkit.

We also said in the preface that the system was not perfect. After nine
chapters describing programs with strange conventions, pointless differences,
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and arbitrary limitations, you will surely agree. In spite of such blemishes,
however, the positive benefits far outweigh the occasional irritating rough
edges. The UNIX system is really good at what it was designed to do: providing
a comfortable programming environment.

So although UNIX has begun to show some signs of middle age, it’s still
viable and still gaining in popularity. And that popularity can be traced to the
clear thinking of a few people in 1969, who sketched on the blackboard a
design for a programming environment they would find comfortable.
Although they didn’t expect their system to spread to tens of thousands of
computers, a generation of programmers is glad that it did.






APPENDIX I EDITOR SUMMARY

The “‘standard’ UNIX text editor is a program called ed, originally written
by Ken Thompson. ed was designed in the early 1970’s, for a computing
environment on tiny machines (the first UNIX system limited user programs to
8K bytes) with hard-copy terminals running at very low speeds (10-15 charac-
ters per second). It was derived from an earlier editor called ged that was
popular at the time.

As technology has advanced, ed has remained much the same. You are
almost certain to find on your system other editors with appealing features; of
these, “‘visual” or ‘“‘screen’” editing, in which the screen of your terminal
reflects your editing changes as you make them, is probably the most common.

So why are we spending time on such a old-fashioned program? The
answer is that ed, in spite of its age, does some things really well. It is avail-
able on all UNIX systems; you can be sure that it will be around as you move
from one system to another. It works well over slow-speed telephone lines and
with any kind of terminal. ed is also easy to run from a script; most screen
editors assume that they are driving a terminal, and can’t conveniently take
their input from a file.

ed provides regular expressions for pattern matching. Regular expressions
based on those in ed permeate the system: grep and sed use almost identical
ones; egrep, awk and lex extend them; the shell uses a different syntax but
the same ideas for filename matching. Some screen editors have a ‘line
mode” that reverts to a version of ed so that you can use regular expressions.

Finally, ed runs fast. It’s quite possible to invoke ed, make a one-line
change to a file, write out the new version, and quit, all before a bigger and
fancier screen editor has even started.

Basics

ed edits one file at a time. It works on a copy of the file; to record your
changes in the original file, you have to give an explicit command. ed pro-
vides commands to manipulate consecutive lines or lines that match a pattern,
and to make changes within lines.

Each ed command is a single character, usually a letter. Most commands

319
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can be preceded by one or two line numbers, which indicate what line or lines
are to be affected by the command; a default line number is used otherwise.
Line numbers can be specified by absolute position in the file (1, 2, ...), by
shorthand like $ for the last line and ‘.’ for the current line, by pattern
searches using regular expressions, and by additive combinations of these.

Let us review how to create files with ed, using De Morgan’s poem from
Chapter 1.

$ ed poem
?poem Warning: the file poem doesn’t exist
a Start adding lines

Great fleas have little fleas
upon their backs to bite ‘em,
And little fleas have lesser fleas,
and so ad infinitum.

. Type a ‘.’ to stop adding

w poem Write lines to file poem

121 ed reports 121 characters written
q Quit

$

The command a adds or appends lines; the appending mode is terminated
by a line with a ‘.’ by itself. There is no indication of which mode you are in,
so two common mistakes to watch for are typing text without an a command,
and typing commands before typing the ‘.’.

ed will never write your text into a file automatically; you have to tell it to
do so with the w command. If you try to quit without writing your changes,
however, ed prints a ? as a warning. At that point, another g command will
let you exit without writing. Q always quits regardless of changes.

$ ed poem
121 File exists, and has 121 characters
a Add some more lines at the end

And the great fleas themselves, in turn,
have greater fleas to go on;

While these again have greater still,
and greater still, and so on.

Type a ‘.’ to stop adding
q Try to quit
? Warning: you didn’t write first
w No filename given; poem is assumed
263
q Now it's OK to quit
$ wc poem Check for sure

8 46 263 poem
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Escape to the shell with !
If you are running ed, you can escape temporarily to run another shell
command; there’s no need to quit. The ed command to do this is ‘!:

$ ed poem
263
lwc poem Run wc without leaving ed
8 46 263 poem
! You have returned from the command
q Quit without w is OK: no change was made
$
Printing
The lines of the file are numbered 1, 2, ...; you can print the n-th line by

giving the command np or just the number n, and lines m through n with
m,np. The “line number” $ is the last line, so you don’t have to count lines.

1 Print 1st line; same as 1p
$ Print last line; same as $p
1,$p Print lines 1 through last
You can print a file one line at a time just by pressing RETURN; you can back
up one line at a time with ‘-’. Line numbers can be combined with + and -:
$-2,%p Print last 3 lines
1,2+3p Print lines 1 through 5

But you can’t print past the end or in reverse order; commands like $, $+1p
and $, 1p are illegal.

The list command 1 prints in a format that makes all characters visible; it’s
good for finding control characters in files, for distinguishing blanks from tabs,
and so on. (See vis in Chapter 6.)

Patterns

Once a file becomes longer than a few lines, it’s a bother to have to print it
all to find a particular line, so ed provides a way to search for lines that match
a particular pattern: /pattern/ finds the next occurrence of pattern.

$ ed poem

263

/flea/ Search for next line containing £lea
Great fleas have little fleas

/flea/ Search for next one

And little fleas have lesser fleas,

V4 Search for next using same pattern
And the great fleas themselves, in turn,

?? Search backwards for same pattern

And little fleas have lesser fleas,

ed remembers the pattern you used last, so you can repeat a search with just
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/7. To search backwards, use ?pattern? and ??.
Searches with /.../ and ?...? “‘wrap around” at either end of the text:

$p Print last line. (‘p’ is optional)
and greater still, and so on.
/flea/ Next flea is near beginning
Great fleas have little fleas
?? Wrap around beginning going backwards

have greater fleas to go on;

A pattern search like /flea/ is a line number just as 1 or $ is, and can be
used in the same contexts:

1,/flea/p Print from I to next £lea
?flea?+1,$p Print from previous £lea +1 to end

Where are we anyway?

ed keeps track of the last line where you did something: printing or adding
text or reading a file. The name of this line is ‘.’; it is pronounced ‘“‘dot” and
is called the current line. Each command has a defined effect on dot, usually
setting it to the last line affected by the command. You can use dot in the
same way that you use $ or a number like 1:

$ ed poem
263
Print current line; same as $ after reading
and greater still, and so on.
.-1,.D Print previous line and this one
While these again have greater still,
and greater still, and so on.

Line number expressions can be abbreviated:

Shorthand:  Same as: Shorthand:  Same as:
- =1 + .+1
-- or -2 -2 ++ or +2 . +2
-n .-n +n .+n
$- $-1 .3 .+3

Append, change, delete, insert

The append command a adds lines after the specified line; the delete com-
mand d deletes lines; the inserr command i inserts lines before the specified
line; the change command c changes lines, a combination of delete and insert.

na Add text after line n

ni Insert text before line n
m,nd Delete lines m through n
m,nc Change lines m through n

If no line numbers are given, dot is used. The new text for a, ¢ and i
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commands is terminated by a ‘.’ on a line by itself; dot is left at the last line
added. Dot is set to the next line after the last deleted line, except that it
doesn’t go past line $.

Oa Add text at beginning (same as 1i)

dp Delete current line, print next (or last, if at $)
., $dp Delete from here to end, print new last

1,%$d Delete everything

?pat?, .-1d Delete from previous ‘pat’ to just before dot
$dp Delete last line, print new last line

$c Change last line. ($a adds after last line)
1,%c Change all lines

Substitution; undo
It’s a pain to have to re-type a whole line to change a few letters in it. The
substitute command s is the way to replace one string of letters by another:

s/o0ld/new/ Change first 014 into new on current line
s/o0ld/new/p Change first 014 into new and print line
s/0ld/new/g Change each o014 into new on current line
s/o0ld/new/gp Change each o014 into new and print line

Only the leftmost occurrence of the pattern in the line is replaced, unless a ‘g’
follows. The s command doesn’t print the changed line unless there is a ‘p’ at
the end. In fact, most ed commands do their job silently, but almost any com-
mand can be followed by p to print the result.

If a substitution didn’t do what you wanted, the undo command u will undo
the most recent substitution. Dot must be set to the substituted line.

u Undo most recent substitution
up Undo most recent substitution and print

Just as the p and d commands can be preceded by one or two line numbers
to indicate which lines are affected, so can the s command:

/0ld/s/old/new/ Find next o1d; change to new
/0ld/s//new/ Find next 01d; change to new
(pattern is remembered)
1,$s/0ld/new/p Change first 01d to new on each line;
print last line changed
1,$s/0ld/new/gp Change each 014 to n.w on each line;

print last line changed

Note that 1, $s applies the s command to each line, but it still means only the
leftmost match on each line; the trailing ‘g’ is needed to replace all occurrences
in each line. Furthermore, the p prints only the last affected line; to print all
changed lines requires a global command, which we’ll get to shortly.

The character & is shorthand; if it appears anywhere on the right side of an
s command, it is replaced by whatever was matched on the left side:
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s/big/very &/
s/big/& &/
s/.x/(&)/
s/and/\&/

THE UNIX PROGRAMMING ENVIRONMENT

Replace big by very big
Replace big by big big
Parenthesize entire line (see .+ below)

APPENDIX 1

Replace and by & (\ turns off special meaning)

Metacharacters and regular expressions

In the same way that characters like * and > and | have special meaning to
the shell, certain characters have special meaning to ed when they appear in a
search pattern or in the left-hand part of an s command. Such characters are
called metacharacters, and the patterns that use them are called regular expres-

sions.

Table 1 lists the characters and their meanings; the examples below

should be read in conjunction with the table. The special meaning of any char-
acter can be turned off by preceding it with a backslash.

Table 1: Editor Regular Expressions

any non-special character ¢ matches itself

turn off any special meaning of character ¢
matches beginning of line when ~ begins pattern
matches end of line when $ ends pattern
matches any single character

matches any one of characters in ...; ranges like a-z are legal
| matches any single character not in

matches zero or more occurrences of r,
where r is a character, . or [...]
on right side of s only, produces what was matched

..\)  tagged regular expression; the matched string

is available as \ 1, etc., on both left and right side

No regular expression matches a newline.

...; ranges are legal

Pattern:

VA 74

/.7

Vaavs

/thing/

/" thing/
/thing$/
/"thing$/
/thing.$/
/thing\.$/
/\/thing\//
/[(tTlhing/
/thing[0-9]/

Matches:

empty line, i.e., newline only
non-empty, i.e., at least one character
all lines

thing anywhere on line

thing at beginning of line

thing at end of line

line that contains only thing

thing plus any character at end of line
thing. at end of line

/thing/ anywhere on line

thing or Thing anywhere on line
thing followed by one digit
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/thing["0-91/ thing followed by a non-digit
/thing[0-91[70-91/ thing followed by digit, non-digit
/thing1. *thing2/ thing1 then any string then thing2

/"thing1.#*thing2$/ thing1 at beginning and thing2 at end

Regular expressions involving # choose the leftmost match and make it as long
as possible. Note that x#* can match zero characters; xx* matches one or
more.

Global commands

The global commands g and v apply one or more other commands to a set
of lines selected by a regular expression. The g command is most often used
for printing, substituting or deleting a set of lines:

m,ng/re/cmd For all lines between m and n that match re, do cmd
m,nv/re/cmd For all lines between m and n that don’t match re, do cmd

The g or v commands can be preceded by line numbers to limit the range; the
default range is 1, $.

g/.../p Print all lines matching regular expression ...

g/.../d Delete all lines matching ...

g/.../s//repl/p Replace Ist ... on each line by ‘repl’, print changed lines
g/.../s//repl/gp Replace each ... by ‘repl’, print changed lines
g/.../s/pat/repl/ On lines matching ..., replace 1st ‘pat’ by ‘repl’
g/.../s/pat/repl/p On lines matching ..., replace 1st ‘pat’ by ‘repl’ and print
g/.../s/pat/repl/gp On lines matching ..., replace all ‘pat’ by ‘repl’ and print
v/.../s/pat/repl/gp On lines not matching ..., replace all ‘pat’ by ‘repl’, print
v/"$/p Print all non-blank lines

g/.../cmdI\ To do multiple commands with a single g,

cmd2\ append \ to each cmd

cmd3 but the last

The commands controlled by a g or v command can also use line numbers.
Dot is set in turn to each line selected.

g/thing/.,.+1p Print each line with thing and next
g/"\.EQ/.1,/"\.EN/-s/alpha/beta/gp Change alpha to beta only
between .EQ and .EN, and print changed lines

Moving and copying lines
The command m moves a contiguous group of lines; the t command makes
a copy of a group of lines somewhere else.

m,nm d Move lines m through n to after line d
mnt d Copy lines m through n to after line d

If no source lines are specified, dot is used. The destination line d cannot be
in the range m, n—1. Here are some common idioms using m and t:
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m+ Move current line to after next one (interchange)
m-2 Move current line to before previous one

m-- Same: -- is the same as -2

m- Does nothing

m$ Move current line to end (m0 moves to beginning)
t. Duplicate current line (t$ duplicates at end)
-,.t. Duplicate previous and current lines

1,$t$ Duplicate entire set of lines

g/”/m0 Reverse order of lines

Marks and line numbers

The command = prints the line number of line $ (a poor default), .= prints
the number of the current line, and so on. Dot is unchanged.

The command kc marks the addressed line with the lower case letter c; the
line can subsequently be addressed as ‘c. The k command does not change
dot. Marks are convenient for moving large chunks of text, since they remain
permanently attached to lines, as in this sequence:

/.../ka Find line ... and mark with a
/.../kb Find line ... and mark with b
‘a,’bp Print entire range to be sure
/.S Find target line

‘a, ’bm. Move selected lines after it

Joining, splitting and rearranging lines
Lines can be joined with the j command (no blanks are added):

m,nj Join lines m through n into one line
The default range is ., .+1, so

jp Join current line to next and print
-5.Jp Join previous line to current and print

Lines can be split with the substitute command by quoting a newline:

s/partipart2/parti\ Split line into two parts

part2/
s/ /\ Split at each blank;
/g9 makes one word per line

Dot is left at the last line created.

To talk about parts of the matched regular expression, not just the whole
thing, use tagged regular expressions: if the construction \(...\) appears in a
regular expression, the part of the whole that it matches is available on both
the right hand side and the left as \1. There can be up to nine tagged expres-
sions, referred to as \ 1, \2, etc.
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s/\(...\)\(.#\)/\2\1/ Move first 3 characters to end
/\(..#\)\1/ Find lines that contain a repeated adjacent string

File handling commands
The read and write commands r and w can be preceded by line numbers:

nr file Read file; add it after line n; set dot to last line read
m,nw file Write lines m-n to file; dot is unchanged
m,nW file Append lines m-n to file; dot is unchanged

The default range for w and W is the whole file. The default n for r is $, an
unfortunate choice. Beware.

ed remembers the first file name used, either from the command line or
from an r or w command. The file command £ prints or changes the name of
the remembered file:

f Print name of remembered file
£ file Set remembered name to ‘file’

The edit command e reinitializes ed with the remembered file or with a new
one:

e Begin editing remembered file
e file Begin editing ‘file’

The e command is protected the same way as q is: if you haven’t written your
changes, the first e will draw an error message. E reinitializes regardless of
changes. On some systems, ed is linked to e so that the same command
(e filename) can be used inside and outside the editor.

Encryption

Files may be encrypted upon writing and decrypted upon reading by giving
the x command; a password will be asked for. The encryption is the same as
in crypt(l). The x command has been changed to X (upper case) on some
systems, to make it harder to encrypt unintentionally.

Summary of commands

Table 2 is a summary of ed commands, and Table 3 lists the valid line
numbers. Each command is preceded by zero, one or two line numbers that
indicate how many line numbers can be provided, and the default values if
they are not. Most commands can be followed by a p to print the last line
affected, or 1 for list format. Dot is normally set to the last line affected; it is
unchanged by £, k, w, x, =, and !.
Exercise. When you think you know ed, try the editor quiz; see quiz(6). O
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.a
<s.C

.y .d

e file

£ file
1,$g/re/cmds

.1
A ]
.kc

$r file

.y .S/re/new/
., .tline

.u

1, $v/re/cmds
1,$w file

x

$=

Vcmdline

(. +1)newline

Table 2: Summary of ed Commands

add text until a line containing just . is typed

change lines; new text terminated as with a

delete lines

reinitialize with file. E resets even if changes not written

set remembered file to file

do ed cmds on each line matching regular expression re;
multiple cmds separated by \newline

insert text before line, terminated as with a

join lines into one

mark line with letter ¢

list lines, making invisible characters visible

move lines to after line

print lines

quit. Q quits even if changes not written

read file

substitute new for whatever matched re

copy lines after line

undo last substitution on line (only one)

do ed cmds on each line not matching re

write lines to file; W appends instead of overwriting

enter encryption mode (or ed -x filename)

print line number

execute UNIX command cmdline

print line

/re/
?re?
Nil+n
NI,N2
NI;N2

Table 3: Summary of ed Line Numbers

absolute line number n, n = 0, 1, 2, ...
current line
last line of text
next line matching re; wraps around from $ to 1
previous line matching re; wraps around from 1 to $
line with mark ¢
line NI *n (additive combination)
lines NI through N2
set dot to NI, then evaluate N2
NI and N2 may be specified with any of the above
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Hoc - An Interactive Language For Floating Point Arithmetic

Brian Kernighan
Rob Pike

ABSTRACT

Hoc is a simple programmable interpreter for floating point expressions.
It has C-style control flow, function definition and the usual numerical
built-in functions such as cosine and logarithm.

1. Expressions

Hoc is an expression language, much like C: although there are several control-flow
statements, most statements such as assignments are expressions whose value is disre-
garded. For example, the assignment operator = assigns the value of its right operand
to its left operand, and yields the value, so multiple assignments work. The expression
grammar is:

expr: number
| variable
| (expr)
| expr binop expr
| unop expr
| function ( arguments )

Numbers are floating point. The input format is that recognized by scanf (3): digits,
decimal point, digits, e or E, signed exponent. At least one digit or a decimal point
must be present; the other components are optional.

Variable names are formed from a letter followed by a string of letters and
numbers. binop refers to binary operators such as addition or logical comparison; unop
refers to the two negation operators, ‘!’ (logical negation, ‘not’) and ‘—’ (arithmetic
negation, sign change). Table 1 lists the operators.

329
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Table 1: Operators, in decreasing order of precedence

>

exponentiation (FORTRAN **), right associative
(unary) logical and arithmetic negation
multiplication, division
addition, subtraction
relational operators: greater, greater or equal,
less, less or equal,
equal, not equal (all same precedence)
logical AND (both operands always evaluated)
logical OR (both operands always evaluated)
assignment, right associative

[N

v
]

-— 0

N == 1 AV + % =
A
=

Functions, as described later, may be defined by the user. Function arguments are
expressions separated by commas. There are also a number of built-in functions, all of
which take a single argument, described in Table 2.

Table 2: Built-in Functions
abs(x) |x |, absolute value of x
atan(x) arc tangent of x
cos(x) cos(x), cosine of x
exp(x) e, exponential of x
int(x) integer part of x, truncated towards zero
log(x) log(x), logarithm base e of x
log10(x) logj(x), logarithm base 10 of x
sin(x) sin(x), sine of x
sqrt(x) Vi, x*

Logical expressions have value 1.0 (true) and 0.0 (false). As in C, any non-zero
value is taken to be true. As is always the case with floating point numbers, equality
comparisons are inherently suspect.

Hoc also has a few built-in constants, shown in Table 3.

Table 3: Built-in Constants
DEG 57.29577951308232087680 180/, degrees per radian

E 2.71828182845904523536 e, base of natural logarithms
GAMMA 0.57721566490153286060 vy, Euler-Mascheroni constant
PHI 1.61803398874989484820  (V5+1)/2, the golden ratio

PI 3.14159265358979323846  m, circular transcendental number

2. Statements and Control Flow
Hoc statements have the following grammar:
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stmt: expr

variable = expr
procedure ( arglist )
while ( expr ) stmt

if ( expr ) stmt

if ( expr ) stmt else stmt
{ stmelist }

print expr-list

return optional-expr

stmtlist: (nothing)
| stmlist stmt

An assignment is parsed by default as a statement rather than an expression, so assign-
ments typed interactively do not print their value.

Note that semicolons are not special to hoc: statements are terminated by newlines.
This causes some peculiar behavior. The following are legal if statements:

if (x < 0) print(y) else print(z)

if (x < 0) {
print(y)
} else {
print(z)
}

In the second example, the braces are mandatory: the newline after the if would ter-
minate the statement and produce a syntax error were the brace omitted.

The syntax and semantics of hoc control flow facilities are basically the same as in
C. The while and if statements are just as in C, except there are no break or continue
statements.

3. Input and Output: read and print

The input function read, like the other built-ins, takes a single argument. Unlike
the built-ins, though, the argument is not an expression: it is the name of a variable.
The next number (as defined above) is read from the standard input and assigned to the
named variable. The return value of read is 1 (true) if a value was read, and O (false)
if read encountered end of file or an error.

Output is generated with the print statement. The arguments to print are a comma-
separated list of ‘expressions and strings in double quotes, as in C. Newlines must be
supplied; they are never provided automatically by print.

Note that read is a special built-in function, and therefore takes a single
parenthesized argument, while print is a statement that takes a comma-separated,
unparenthesized list:

while (read(x)) {
print "value is ", x, "\n"
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4. Functions and Procedures

Functions and procedures are distinct in hoc, although they are defined by the same
mechanism. This distinction is simply for run-time error checking: it is an error for a
procedure to return a value, and for a function not to return one.

The definition syntax is:

function: Sfunc name() stmt

procedure: proc name() stmt

name may be the name of any variable — built-in functions are excluded. The defini-
tion, up to the opening brace or statement, must be on one line, as with the if state-
ments above.

Unlike C, the body of a function or procedure may be any statement, not necessarily
a compound (brace-enclosed) statement. Since semicolons have no meaning in hoc, a
null procedure body is formed by an empty pair of braces.

Functions and procedures may take arguments, separated by commas, when
invoked. Arguments are referred to as in the shell: $3 refers to the third (1-indexed)
argument. They are passed by value and within functions are semantically equivalent to
variables. It is an error to refer to an argument numbered greater than the number of
arguments passed to the routine. The error checking is done dynamically, however, so a
routine may have variable numbers of arguments if initial arguments affect the number
of arguments to be referenced (as in C’s printf ).

Functions and procedures may recurse, but the stack has limited depth (about a hun-
dred calls). The following shows a hoc definition of Ackermann’s function:

$ hoc
func ack() {
if ($1 == 0) return $2+1
if ($2 == 0) return ack($1-1, 1)
return ack($1-1, ack($1, $2-1))
}
ack(3, 2)
29
ack(3, 3)
61
ack(3, 4)
hoc: stack too deep near line 8
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5. Examples
Stirling’s formula:

n!~ \/2n1'r(n/e)"(1+—1——)
12n

$ hoc
func stirl() {
return sqrt(2*$1*PI) * ($1/E)"$1x(1 + 1/(12%$1))
}
stirl(10)
3628684.7
stirl(20)
2.4328818e+18

Factorial function, n!:
func fac() if ($1 <= 0) return 1 else return $1 » fac($1-1)

Ratio of factorial to Stirling approximation:

i=29

while ((i = i+1) <= 20) {
print i, " ", fac(i)/stirl(i), "\n"

}

10 1.0000318

11 1.0000265

12 1.0000224

13 1.0000192

14 1.0000166

15 1.0000146

16 1.0000128

17 1.0000114

18 1.0000102

19 1.0000092

20 1.0000083
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The following is a listing of hoc6 in its entirety.

W HH P *

HOC LISTING

hoc.y

%{

#1nclude "hoc.h"

#define code2(c1,c2) code(c1); code(c2)

#define code3(c1,c2,c3) code(c1); code(c2); code(c3)
%}

XN NN

X RH

%union {
Symbol *sym; /+ symbol table pointer */
Inst #1nst; /#* machine instruction »/
int narg; /% number of arguments =/

}

%token <sym> NUMBER STRING PRINT VAR BLTIN UNDEF WHILE IF ELSE

%token <sym> FUNCTION PROCEDURE RETURN FUNC PROC READ

%token <narg> ARG

%type <inst> expr stmt asgn prlist stmtlist

%type <inst> cond while 1f begin end

%iype <sym> procname

%type  <narg> arglist

%right ‘=’

%left OR

%left AND

%left GT GE LT LE EQ NE

%left f+r =t

%left [ A

%left UNARYMINUS NOT

%right ’°°

%%

last: /% nothing */

list “\n’

list defn ‘\n’

list asgn ‘\n’ { code2(pop, STOP); return 1; }
list stmt ‘\n’ { code(STOP); return 1; }

list expr ‘\n’ { code2(print, STOP); return 1; }
list error ‘\n’ { yyerrok; }

asgn:

ARG ‘=’ expr

VAR ’=’ expr { code3(varpush, (Inst)$1,assign); $$=$3; }

{ defnonly("$"); code2(argassign,(Inst)$1); $$=$3;}

335
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stmt:

cond:
while:
1f:
begin:
end:

stmtlist

expr:

prlist:

defn:

procname

arglast:

%%

expr { code(pop); }

RETURN { defnonly("return"); code(procret); }

RETURN expr

{ defnonly("return"); $$=$2; code(funcret); }

PROCEDURE begin ‘(’ arglist ’)’

{ $$ = $2; code3(call, (Inst)s$1,

PRINT prlist { $$ = $2; }
while cond stmt end {
($1)[1) = (Inst)s$3;

(Inst)$4); }

/% body of loop */

($1)[2] = (Inst)$4; } /% end, 1f cond fails */

1f cond stmt end {

/% else-less 1f =/

($1)[1) = (Inst)$3; /% thenpart =/
($1)[3] = (Inst)s$4; } /% end,

1f cond stmt end ELSE stmt end {

1f cond fails x*/
/% 1f with else »/

($1)[1) = (Inst)$3; /% thenpart */

($1)[2] = (Inst)$6; /% elsepart =/

($1)[(3] = (Inst)$7; } /» end, 1f cond fails */
{’ stmtlist ‘}’ { $$ = $2;5 }

‘(' expr ‘)’ { code(STOP); $$ = $2;

WHILE { $$ = code3(whilecode,STOP,STOP);

}

IF { $$ = code(1fcode); code3(STOP,STOP,STOP); }

/% nothing */ { $$ = progp;

/% nothing »/ { code(sTOP)

H

/# nothing #*/ { $$ = progp;

stmtlist ‘\n’
stmtlist stmt

NUMBER { $$ = code2(constpush, (Inst)$1);

VAR { s

}

}

$$

ARG { defnonly("$"); $$ = code2(arg,

asgn
FUNCTION begin ‘(’ arglist ’)’

progp; }

}

code3(varpush, (Inst)$1, eval); }
(Inst)$1); }

{ $$ = $2; code3(call,(Inst)$1,(Inst)s$4); }
READ ‘(' VAR ')’ { $$ = code2(varread,

‘(’ expr $$ = $2; }

s

{
expr ‘+’ expr { code(add); }
expr ‘-’ expr { code(sub); }
expr ’‘*’ expr { code(mul); }
expr '/’ expr { code(div); }
expr ‘"’ expr { code (power); }
,_s
expr GT expr
expr GE expr { }
expr LT expr { code(lt); }
expr LE expr { code(le); }
expr EQ expr { code(eq); }
{ }
{
{
{

-

code(gt); }
code(ge);

expr NE expr code(ne);

expr AND expr code(and); }

expr OR expr code(or); }

NOT expr $$ = $2; code(not)

expr

prlist ’,’ expr
prlist ’,’ STRING

FUNC procname { $2->type=FUNCTION;

VAR

FUNCTION

PROCEDURE

/% nothing »*/ { $$ = 0; }
expr { 88 = 15 }
arglist “,’ expr { 88 = $1 +

H

}

{ code(prexpr);
STRING { $$ = code2(prstr,

{ code(prexpr);

{ code2(prstr,

}
}

(Inst)$3); }
BLTIN “(’ expr ’)’ { $$=$3; code2(bltin,
oy

(Inst)$1->u.ptr); }

-’ expr  %prec UNARYMINUS { $$=$2; code(negate); }

(Inst)$1); }

(Inst)$3); }

indef=1; }

‘(’ ’)’ stmt { code(procret); define($2); indef=0; }
PROC procname { $2->type=PROCEDURE; indef=1; }

‘(’ ’)’ stmt { code(procret); define($2); indef=0; }

13

}
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/+ end of grammar »*/

#1include <stdio.h>
#1include <ctype.h>

char
int

sprogname ;
lineno = 1;

#1nclude <signal.h>
#i1nclude <setjmp.h>
jmp_buf begin;

int
char
FILE
char
int

int c;
yylex()
{

indef;
#1nfile; /+ 1nput file name #/
#fin; /% 1nput file pointer #/
##gargv; /% global argument list #/
gargc;
/+ global for use by warning() =/
/% hoc6 =/
while ((c=getc(fin)) ==’ ’ il c == ’\t’)
H
if (¢ == EOF)
return 0;
1f (c == ‘.’ 11 1sdigit(c)) { /% number */
double d;

ungetc(c, fin);
fscanf(fin, "%1f", &4);
yylval.sym = install("", NUMBER, d);
return NUMBER;
}
1f (1salpha(c)) {
Symbol #s;
char sbuf[100], *p = sbuf;
do {
1f (p >= sbuf + sizeof(sbuf) - 1) {
*p = ‘\0";
execerror ("name too long", sbuf);
}
#p++ = C;
} while ((c=getc(fin)) != EOF && 1salnum(c));
ungetc(c, fin);
*p = '\0’;
1f ((s=lookup(sbuf)) == 0)
s = 1install(sbuf, UNDEF, 0.0);
yylval.sym = s;
return s->type == UNDEF ? VAR : s->type;
}
if (c == ’$’) { /» argument? =/
int n = 03
while (1sdigit(c=getc(£fin)))
n=10*n+c- '0";
ungetc(c, fin);
1f (n == 0)
execerror("strange $...", (char #)0);
yylval.narg = n;
return ARG;
}
1f (c == ""’) { /# quoted string =/
char sbuf[100], *p, #emalloc();

for (p = sbuf; (c=getc(fin)) != ""’; p++) {
1f (¢ == ‘\n’ |} ¢ == EOF)
execerror("missing quote", "");
1f (p >= sbuf + sizeof(sbuf) - 1) {
*p = '\0";
execerror("string too long", sbuf);
}
+p = backslash(c);
}
*p = 0;

yylval.sym = (Symbol *)emalloc(strlen(sbuf)+1);
strcpy(yylval.sym, sbuf);
return STRING;

}

switch (c) {

case return follow(’=’, GE, GT);
case return follow(’=’, LE, LT);
case return follow(’=’, EQ, '=’);
case “!’: return follow(’=’, NE, NOT);
case ‘1’: return follow(’!’, OR, ’1‘);
case '&": return follow(’&’, AND, ‘&°%);
case ’‘\n’: lineno++; return ‘\n’;
default return c;
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}
backslash(c) /% get next char with \’s interpreted #/
int c;
{
char #index(); /# ‘strchr()’ in some systems #/
static char transtab[] = "b\bf\fn\nr\rt\t";
1f (c 1= "\\")
return c;
c = getc(fin);
1f (1slower(c) && 1index(transtab, c))
return index(transtab, c)[1];
return c;
}
follow(expect, 1fyes, 1fno) /% look ahead for >=, etc. #/
{
int ¢ = getc(fin);
1f (c == expect)
return ifyes;
ungetc(c, fin);
return ifno;
}
defnonly(s) /+ warn if 1llegal definition #/
char #s;
{
1f (lindef)
execerror(s, "used outside definition");
}
yyerror(s) /+ report compile-time error #/
char #s;
{
warning(s, (char #)0);
}

execerror(s, t) /# recover from run-time error #/
char #s, #t;

{
warning(s, t);
fseek(fin, OL, 2); /# flush rest of file
longjmp(begin, 0);
}
fpecatch() /% catch floating point exceptions #/
execerror("floating point exception", (char #) 0);
}
main(argc, argv) /% hoc6 #/
char #argv[];
{

int 1, fpecatch();
progname = argv(0];

1f (arge == 1) { /+ fake an argument list #/
static char #stdinonlyl[] = { "-" };
gargv = stdinonly;
gargc = 1;

} else {
gargv = argv+1;
gargc = argc-1;

}

init();

while (moreinput())
run();

return 0;
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moreinput()

if (gargc-- <= 0)
return 0;

1f (fin && fain = stdan)
fclose(fin);

infile = w®gargv++;

lineno = 1;

if (strcmp(infile, "-") == 0) {
fin = stdan;
infile = 03

} else 1f ((fin=fopen(infile, "r")) == NULL) {
fpraintf(stderr, "%s: can’t open %s\n", progname, infile);
return moreinput();

}
return 1;
}
run() /+ execute until EOF #/
{
setjmp(begin);
signal (SIGFPE, fpecatch);
for (initcode(); yyparse(); initcode())
execute(progbase);
}
warning(s, t) /% praint warning message #*/
char #s, =#t;
{
fprantf(stderr, "%s: %s", progname, s);
1f (t)
fprintf(stderr, " %s", t);
1f (anfile)
fprintf(stderr, " in %s", infile);
fprintf(stderr, " near line %d\n", lineno);
while (c I= ’\n’ && c != EOF)
c = getc(fin); /# flush rest of input line */
1f (c == ‘\n’)
lineno++;
}
E2 2T Y hoc.h E O T e 2 * % E2T 22
typedef struct Symbol { /* symbol table entry */
char *name;
short type;
union {
double val; /% VAR */
double (»ptr)(); /% BLTIN */
int (#defn) (); /% FUNCTION, PROCEDURE %/
char *str; /% STRING #/
}oug
struct Symbol *next; /# to link to another =/
} Symbol;
Symbol #install(), slookup();
typedef union Datum { /+ interpreter stack type */

} Datum;

double val;
Symbol #sym;
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extern Datum pop();
extern eval(), add(), sub(), mul(), div(), negate(), power();

typedef int (*Inst)();
#define STOP (Inst) 0

extern Inst sprogp, *progbase, progl], xcode();

extern assign(), bltin(), varpush(), constpush(), print(), varread();
extern prexpr(), prstr();

extern gt(), 1lt(), eq(), ge(), le(), ne(), and(), or(), not();
extern 1fcode!), whilecode(), call(), arg(), argassign();

extern funcret(), procret();

ek symbol.c B R R R R R R e

#1nclude "hoc.h"
#include "y.tab.h"

static Symbol *symlist = 0; /* symbol table: linked list #/

Symbol #lookup(s) /% find s 1n symbol table %/
char #s;

{
Symbol #sp;

for (sp = symlist; sp != (Symbol %) 0; Sp = sp->next)
1f (strcmp(sp->name, s) == 0)
return sp;
return 0; /* ==> not found »/

}

Symbol #install(s, t, d) /% install s in symbol table x/
char =s;
int t;
double 4;

Symbol #*sp;
char wemalloc();

sp = (Symbol *) emalloc(sizeof(Symbol));

sp->name = emalloc(strlen(s)+1); /% +1 for '\0’ »/
strcpy(sp->name, S);

sp->type = t;

sp~->u.val = d;

sp->next = symlist; /% put at front of list */
symlist = sp;

return sp;

}

char xemalloc(n) /% check return from malloc =/
unsigned n;
{
char *p, *malloc();
p = malloc(n);
1f (p == 0)
execerror("out of memory", (char =) 0);
return p;

ERRER code.c R R R e e e

#1nclude "hoc.h"
#1nclude "y.tab.h"
#1nclude <stdio.h>

#define NSTACK 256

static Datum stack[NSTACK]; /% the stack =/
static Datum *stackp; /% next free spot on stack #/
#define NPROG 2000
Inst prog[NPROG]; /% the machine #/
Inst *progp; /% next free spot for code generation */
Inst *pc; /% program counter during execution */
Inst #progbase = prog; /% start of current subprogram %/
int returning; /% 1 1f return stmt seen */
typedef struct Frame { /* proc/func call stack frame */
Symbol «#sp; /% symbol table entry #/
Inst *retpc; /% where to resume after return %/
Datum *argn; /% n-th argument on stack */
int nargs; /* number of arguments x*/

} Frame;
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#define NFRAME 100
Frame frame[ NFRAME] ;
Frame *fp; /+ frame pointer */

initcode() {
progp = progbase;
stackp = stack;
fp = frame;
returning = 0;

}
push(d)
Datum d;
{
if (stackp >= &stack[NSTACK])
execerror("stack too deep”, (char #)0);
#stackp++ = d;
}
Datum pop()
{
1f (stackp == stack)
execerror("stack underflow", (char #)0);
return *--stackp;
}
constpush()
{
Datum d4;
d.val = ((Symbol #)#pc++)->u.val;
push(d);
}
varpush( )
Datum 4;
d.sym = (Symbol *)(*pc++);
push(d);
}
whilecode()
Datum d4;
Inst #savepc = pcC;
execute(savepc+2); /+ condition »/
d = pop();

while (d.val) {
execute(#((Inst »#)(savepc))); /# body */
if (returning)
break;
execute(savepc+2); /% condition #/
d = pop();

1f (lreturning)
pc = #((Inst ##)(savepc+1)); /# next stmt =/

}

1fcode()
{
Datum 4;
Inst *savepc = pc; /% then part #/

execute(savepc+3); /% condition %/

d = pop();

1f (d.val)
execute(*((Inst ##)(savepc)));

else if (#((Inst =#)(savepc+1))) /% else part? #/
execute(*((Inst ##)(savepc+1)));

1f (lreturning)
pc = #((Inst ##)(savepc+2)); /* next stmt #/

}

define(sp) /% put func/proc i1n symbol table */
Symbol #sp;

{
sp->u.defn = (Inst)progbase; /+# start of code */
progbase = progp; /% next code starts here #/
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call() /# call a function #/
{
Symbol #sp = (Symbol #)pc[0]; /# symbol table entry */
/% for function */
1f (fp++ >= &frame[NFRAME-1])
execerror(sp->name, "call nested too deeply");
fp->sp = sp;
fp->nargs (1nt)pcl1];
fp->retpc pc + 2;
fp->argn = stackp - 1; /% last argument »/
execute(sp->u.defn);
returning = 0;

}
ret() /% common return from func or proc #/
{
int 1;
for (1 = 0; 1 < fp->nargs; 1++)
pop(); /# pop arguments #*/
pc = (Inst #)fp->retpc;
--fp;
returning = 1;
}
funcret() /% return from a function #/
{
Datum d;
1f (fp->sp->type == PROCEDURE)
execerror(fp->sp->name, "(proc) returns value");
d = pop(); /# preserve function return value */
ret();
push(d);
}
procret() /# return from a procedure */
{
1f (fp->sp->type == FUNCTION)
execerror(fp->sp->name,
"(func) returns no value");
ret();
}
double #getarg() /% return pointer to argument =/
{
int nargs = (1int) #pc++;
1f (nargs > fp->nargs)
execerror (fp->sp->name, "not enough arguments");
return &fp->argn(nargs - fp->nargs].val;
}
arg() /+ push argument onto stack #/
Datum d;
d.val = xgetarg();
push(d);
}
argassign() /+ store top of stack in arqgument =/
{
Datum 4;
d = pop();
push(d); /+ leave value on stack */
«#getarg() = d.val;
}
bltan()
Datum 4;
d = pop();
d.val = (%(double (#)())#*pc++)(d.val);
push(d);
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eval() /# evaluate variable on stack #/

Datum d;
d = pop();
if (d.sym->type != VAR && d.sym->type != UNDEF)
execerror("attempt to evaluate non-variable", d.sym->name);
if (d.sym->type == UNDEF)
execerror("undefined variable", d.sym->name);
d.val = d.sym->u.val;

push(d);

}

add()

{
Datum d1, d42;
d2 = pop();
d1 = pop();
d1.val += d2.val;
push(d1);

}

sub()

{
Datum 41, d42;
d2 = pop();
d1 = pop();
d1.val -= d2.val;
push(d1);

}

mul()

{
Datum d1, d2;
d2 = pop();
d1 = pop();
d1.val #= d2.val;
push(d1);

}

div()

{
Datum d1, d2;
d2 = pop();
if (d2.val == 0.0)

execerror ("division by zero", (char *)0);

d1 = popl();
d1.val /= d2.val;
push(d1);

}

negate()

{
Datum d;
d = pop();
d.val = -d.val;
push(d);

}

gt()

{
Datum d1, d2;
d2 = pop();
d1 = pop();
d1.val = (double)(di.val > d2.val);
push(d1);

}

1t()

{
Datum d1, 42;
d2 = pop();
d1 = pop();
d1.val = (double)(di.val < d2.val);
push(d1);
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ge()

le()

eq()

ne()

and()

or()

not ()

}

power ()

{

Datum 41, d42;

d2 = pop();

d1 = pop();

d1.val = (double)(d1
push(d1);

Datum d1, d42;

d2 = pop();

d1 = pop();

di.val = (double)(d1
push(d1);

Datum 41,
d2 = pop();

d1 = pop();

d1.val = (double)(d1
push(d1);

dz;

Datum 41, d42;

d2 = pop();

d1 = pop();

d1.val = (double)(d1
push(d1);

Datum 41, d2;

d2 = pop();

d1 = pop();

d1.val = (double)(d1
push(d1);

Datum d1, d42;

d2 = pop();

d1 = pop();

d1.val = (double)(d1
push(d1);

Datum 4d;

d = pop();
d.val =
push(d);

Datum d1, d42;

extern double Pow();
d2 = pop();

d1 = popl();

d1.val =
push(d1);

.val

.val

.val

.val

.val

.val

(double)(d.val ==

daz.

d2.

d2

d2

.val);

val);

val);

.val);

0.0 && d2.val I= 0.0);

0.0 }! d2.val != 0.0);

.0);

Pow(d1.val, d2.val);
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assagn()

{
Datum 41, d2;
d1 = pop();
d2 = pop();

1f (d1.sym->type l= VAR && d1.sym->type != UNDEF)

execerror("assignment to non-variable”,
d1.sym->name);
d1.sym->u.val = d2.val;
d1.sym->type = VAR;
push(d2);
}

praint() /# pop top value from stack, print it #/

{

Datum d;
d = pop();
printf("\t%.8g\n", d.val);
}
prexpr () /# print numeric value #/
Datum 4;
d = pop();
printf("%.8g ", d.val);
}
prstr() /% praint string value */
printf("%s", (char =) #pc++);
}
varread() /+ read into variable #/
{
Datum d;
extern FILE #fin;
Symbol #var = (Symbol *) *pc++;
Again:
switch (fscanf(fin, "%1f", &var->u.val)) {
case EOF:
1f (moreinput())
goto Again;
d.val = var->u.val = 0.0;
break;
case 0.
execerror ( "non-number read into", var->name);
break;
default:
d.val = 1.0;
break;
}
var->type = VAR;
push(d);
}
Inst #code(f) /# install one instruction or operand #/
Inst £
{
Inst #oprogp = progp;
1f (progp >= &prog[NPROG])
execerror ("program too big", (char #)0);
s#progp++ = f;
return oprogp;
}
execute(p)
Inst #p;
{

for (pc = p; #pc l= STOP && !returning; )
(#(*pc++))();

HOC LISTING
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EEEEE init.c R e e e et
#1nclude "hoc.h"

#1nclude "y.tab.h"
#1nclude <math.h>
extern double Log(), Log10(), Sqrt(), Exp(), integer();
static struct { /% Keywords =/
char *name ;
int kval;
} keywords[] = {
"proc", PROC,
“func", FUNC,
"return", RETURN,
"if", IF,
"else", ELSE,
"while", WHILE,
“praint", PRINT,
"read", READ,
0, 0,
}s
static struct { /% Constants #/
char #name;
double cvalj;
} consts[] = {
"pI", 3.14159265358979323846,
"E", 2.71828182845904523536,
"GAMMA", 0.57721566490153286060, /* Euler =/
"DEG", 57.29577951308232087680, /* deg/radian */
"PHI", 1.61803398874989484820, /* golden ratio */
0, 0
}s
static struct { /% Built-ins =/
char #name;
double (#func)();
} builtins[] = (
“sin", sin,
“cos", cos,
"atan", atan,
"log", Log, /% checks range #/
"log10", Log10, /% checks range #*/
"exp", Exp, /# checks range */
"sqrt", Sqrt, /% checks range */
"int", 1integer,
"abs", fabs,
0, 0
I
init() /% install constants and built-ins in table »/
{
int 1;
Symbol xs;
for (1 = 0; keywords[i].name; 1++)
install(keywords[1].name, keywords[i].kval, 0.0);
for (1 = 0; consts[i].name; 1++)
install(consts[1i].name, VAR, consts[i].cval);
for (1 = 0; builtins[i].name; 1++) {
s = install(builtins[i].name, BLTIN, 0.0);
s->u.ptr = builtins[i].func;
}
}
EREER math.c e e e S s e R ]

#1nclude <math.h>
#1nclude <errno.h>
extern int errno;
double errcheck();

double Log(x)
double x;
{
return errcheck(log(x), "log");

}
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double Log10(x)

double x;
{
return errcheck(log10(x), "log10");
}
double Sqrt(x)
double x;
{
return errcheck(sqrt(x), "sqrt");
}
double Exp(x)
double x;
{
return errcheck(exp(x), "exp");
}

double Pow(x, y)
double x, y;
{

return errcheck(pow(x,y), "exponentiation");

}
double integer(x)
double x;
{
return (double)(long)x;
}
double errcheck(d, s) /% check result of library call =/
double 4;
char #s;
{
if (errno == EDOM) {
errno = 0;
execerror(s, "argument out of domain");
} else if (errno == ERANGE) {
errno = 0;
execerror(s, "result out of range");
}
return d;
}
N makefile B R R Rt R e et e T e

YFLAGS = -d
OBJS = hoc.o code.o init.o math.o symbol.o

hoc6é:  $(OBJS)
cc $(CFLAGS) $(OBJS) -1lm -o hocé

hoc.o code.o init.o symbol.o: hoc.h
code.o init.o symbol.o: x.tab.h

x.tab.h: y.tab.h
-cmp ~-s x.tab.h y.tab.h i} cp y.tab.h x.tab.h

pr: hoc.y hoc.h code.c init.c math.c symbol.c
@pr $°?
@touch pr

clean:

rm -f $(OBJS) [xyl.tab.[ch]
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